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We introduce and study the approximability of the following problem. There is a set of 
useful objects that are available for purchase, and another set of useless objects that can 
be sold. Selling useless objects generates revenue which allows to acquire useful objects. 
We search for a sequence of decisions (buying or selling objects) which optimizes either 
the number of purchased objects or their global utility. One of the constraints is that, at 
any time, only a limited amount of money can be held.
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1. Introduction

We consider a general problem in which an activity de-
pends on a divisible and nonrenewable resource that is 
stored in a place with limited capacity. Some activities in-
crease the quantity of resource, some others decrease this 
amount. An application of the model can be the operation 
of a mobile electric device having a battery with limited 
capacity. Two types of tasks exist: those whose execution 
requires a given amount of energy and those which in-
crease the energy available.

Along this paper, we use the following abstract inter-
pretation. There is a set of useful objects that are available 
for purchase, and another set of useless objects that can be 
sold. The sale of useless objects generates revenue which 
allows to acquire useful objects. Thus, money is the divis-
ible resource in this setting, and only a limited amount 
can be collected at a time. We search for a sequence of 
decisions (buying or selling objects) which optimizes the 
number (or utility) of the purchased objects.
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We start by giving a formal definition of the model in 
Section 2. Two optimization problems are derived, denoted 
by �c and �u , respectively. This paper deals with approx-
imation algorithms [1,2]. Given ρ ∈ (0, 1] and a maximiza-
tion problem, we say that a solution with value VAL is a 
ρ-approximation of the optimum value OPT if VAL ≥ ρ OPT . 
A ρ-approximation algorithm for a given problem returns 
a ρ-approximation for any instance. Moreover, its time 
complexity must be polynomial in the size of its input. 
In Section 3, we prove that both �c and �u cannot be 
approximated within the ratio 1/2 + ε, unless P = NP. 
A 1/2-approximation algorithm for �c is given in Sec-
tion 4. Section 5 is devoted to a (1/2 − γ )-approximation 
algorithm for �u .

2. General model, notations and problems

There is an agent and two sets of objects X and Y . 
Every object z ∈ X ∪ Y has a price p(z) ∈ N and a util-
ity u(z) ∈ N. Given a subset of objects Z , p(Z) and u(Z)

stand for 
∑

z∈Z p(z) and 
∑

z∈Z u(z), respectively. X is the 
set of objects that the agent owns. We have p(x) > 0 and 
u(x) = 0 for every x ∈ X . Y is the set of objects that 
the agent would like to acquire. We have p(y) ≥ 0 and 
u(y) > 0 for every y ∈ Y . Therefore, the agent can sell 
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x ∈ X at a price of p(x) or buy y ∈ Y , at a price of p(y). 
The agent has a budget that changes over time. The bud-
get at time t , denoted by B(t), is a member of N and 
we suppose that B(0) = B0 for some B0 given in the in-
put. The budget is capped, meaning that it cannot exceed 
a value Bmax given in the input. The problem consists of 
selling and buying objects over time, under the following 
constraints.

– the agent can sell x ∈ X at time t if x was not sold 
earlier. The budget increases by min{p(x), Bmax − B(t)}
where B(t) designates the value of the budget just 
before x is sold. Having an upper bound on the bud-
get means that a part of p(x) may be wasted when 
p(x) > Bmax − B(t);

– the agent can buy y ∈ Y at time t if y was not bought 
earlier and B(t) ≥ p(y). The budget is immediately de-
creased by p(y). The utility increases by u(y).

In the model, the changes of budget over time are only 
due to the buying and selling of objects. An object can-
not be partially sold or bought. An object y ∈ Y cannot be 
sold after it is bought. We assume that p(z) ≤ Bmax for all 
object z ∈ X ∪ Y because no object of price strictly larger 
than Bmax can be bought, and the budget is increased by 
at most Bmax when an object is sold.

A solution s is an ordered list of objects. We can see s
as a list of operations because at time t , the t-th object of 
s is sold or bought, depending on whether it belongs to X
or Y .

Let X(s) and Y (s) be the subsets of X and Y which ap-
pear in s, respectively. We consider two problems related 
to the general model: find a solution s such that |Y (s)|
or u(Y (s)) is maximum. The problems are called �c and 
�u (c and u stand for cardinality and utility, respectively). 
Maximizing u(Y (s)) is equivalent to maximizing the utility 
of the objects that the agent acquires because u(x) = 0 for 
every x ∈ X .

Let us give a small example with X = {x1}, Y =
{y1, y2, y3}, B0 = 2 and Bmax = 6. Utilities and prices are 
given in the next table.

x1 y1 y2 y3
price 6 1 3 4
utility 0 2 5 3

A solution can be 〈y1, x1, y2〉. The budget is 2 initially. At 
time 1, it drops to 1 after y1 is bought. At time 2 it be-
comes 6 after x1 is sold. It is 3 once y2 is bought at time 3. 
The global utility of the solution is 7.

2.1. Related work

Our problem resembles the well known knapsack prob-
lem [1,3]. In this problem, there is a set of items, each 
having a size and a utility, and a given capacity. One seeks 
a subset of items whose total size does not exceed the 
capacity while the total utility is maximized. The main 
difference between knapsack and our problem is that the 
capacity is fixed in the former whereas it can be modified 
over time in the latter. There are many variants of knap-

sack (see Chapter 13 of [3] for a nonexhaustive list) but, up 

to our knowledge, none of them is equivalent to (or more 
general than) �u . The variant of knapsack that is closest 
to �u (but not equivalent) is probably the multiperiod 
knapsack [4]. There are m periods and the capacity of the 
knapsack is di during period i. Given {di : i = 1, . . . , m}
such that d1 ≤ . . . ≤ dm , the problem is to find a set of 
items, together with the period during which they are 
picked, such that the capacity in each period is not ex-
ceeded, and the total utility is maximized. Without the 
upper bound Bmax on the budget, �u would be equivalent 
to knapsack because it suffices to sell all the objects of X
at the beginning and seek Y ′ ⊆ Y such that u(Y ′) is maxi-
mized under the constraint 

∑
y∈Y ′ p(y) ≤ B0 + ∑

x∈X p(x).
The problems studied in this article are also related to 

some scheduling problems. For example, Carlier and Rin-
nooy Kan study a scheduling problem subject to a resource 
constraint [5]. Apart from precedence constraints, execut-
ing a job requires that a given amount of some nonrenew-
able resource is available. In their model, at some given 
moments, the quantity of the resource is increased by a 
predefined amount. The difference with our model is that 
we can decide when the quantity of the resource is in-
creased. Moreover, we suppose in this article that there 
exists an upper bound on the quantity of resource avail-
able at a time.

One can also mention similarities between �u and the
relocation problem [6,7]. Some buildings have to be re-
developed, i.e. the number of households that they can 
accommodate may decrease or increase. The problem is 
to find a redevelopment schedule with minimum duration 
such that every tenant is relocated.

3. Complexity

Given a value U , the decision version of �c (resp. �u) 
asks whether a feasible solution s satisfying |Y (s)| ≥ U
(resp. u(Y (s)) ≥ U ) exists.

Theorem 1. For any ε > 0, �c is not 
(

1
2 + ε

)
-approximable, 

unless P = NP.

Proof. We conduct a gap reduction of partition which is
NP-complete [8]. Given r integers {α1, . . . , αr} such that ∑r

j=1 α j = 2B and 0 < α j < B , partition asks whether a 
subset J ⊆ {1, . . . , r} such that 

∑
j∈ J α j = B = ∑

j /∈ J α j ex-
ists.

Given an instance I of partition, build an instance I ′
of �c as follows: B0 = 0, Bmax = B , X = {x1, . . . , xr} with 
p(xi) = αi for i ∈ [r], Y = {y1, y2} with p(y1) = p(y2) = B
and u(y1) = u(y2) = 1. We claim that I ′ admits a feasible 
solution s satisfying |Y (s)| = 2 if and only if I admits a 
partition.

If I admits a partition J , then sell the objects xi with 
i ∈ J , buy y1, sell the objects xi with i /∈ J and buy y2. 
Conversely, let s be a feasible solution such that Y (s) =
{y1, y2} and y1 is bought before y2. Let J ′ be the indices 
of the objects in X sold before y1 is bought. It must be 
p({xi : i ∈ J ′}) ≥ p(y1) = B . The budget is 0 just after y1 is 
purchased because Bmax = B . Let J ′′ be the indices of the 
objects of X sold between the purchase of y1 and y2. It 
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