Incidence coloring of Cartesian product graphs ${ }^{\omega}$

Alexander Chane Shiau ${ }^{\text {a }}$, Tzong-Huei Shiau ${ }^{\text {b }}$, Yue-Li Wang ${ }^{\text {c,* }}$
a Department of Mathematics, National Taiwan University, Taipei, Taiwan
${ }^{\text {b }}$ Computer \& Communications Associates Incorporation, Hinchu, Taiwan
c Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan

A R T I CLE IN F O

Article history:

Received 27 October 2014
Received in revised form 4 May 2015
Accepted 4 May 2015
Available online 11 May 2015
Communicated by R. Uehara

Keywords:

Incidence coloring
Cartesian product graphs
Hypercubes
Combinatorial problems
Graph algorithms

Abstract

For a vertex $v \in V(G)$, the incidence neighborhood of v, denoted by $\operatorname{IN}(v)$, is the set $\{(v, e): e \in E(G)$ and v is incident with $e\} \cup\{(u, e): e=v u \in E(G)\}$. Let $S_{\sigma}(v)$ denote the set of colors assigned to $\operatorname{IN}(v)$ in G under incidence coloring σ and $s(\sigma)=\max \left\{\left|S_{\sigma}(v)\right|\right.$: $v \in V(G)\}$. Let $G_{1} \square G_{2}$ denote the Cartesian product of graphs G_{1} and G_{2}. Let σ_{i} be an incidence coloring of graph G_{i} and $n\left(\sigma_{i}\right)$ the number of colors used by σ_{i} for $i \in\{1,2\}$. In this paper, we show that if $n\left(\sigma_{1}\right) \geqslant n\left(\sigma_{2}\right)-s\left(\sigma_{2}\right)$, then there exists an incidence coloring of $G_{1} \square G_{2}$ which uses $n\left(\sigma_{1}\right)+s\left(\sigma_{2}\right)$ colors; otherwise, there exists an incidence coloring of $G_{1} \square G_{2}$ using $n\left(\sigma_{2}\right)$ colors. Based on the result above, we settle the following conjecture in affirmative: For integer $p \geqslant 1$,

$\chi_{i}\left(Q_{n}\right)= \begin{cases}n+1 & \text { if } n=2^{p}-1 \\ n+2 & \text { otherwise, }\end{cases}$
where Q_{n} is the n-dimensional hypercube and $\chi_{i}\left(Q_{n}\right)$ is the incidence coloring number of Q_{n}.
(C) 2015 Elsevier B.V. All rights reserved.

1. Introduction

The incidence set of a graph $G=(V, E)$ is defined as $I(G)=\{(v, e): v \in V(G), e \in E(G), v$ is incident with $e\}$, where $V(G)$ and $E(G)$ are the vertex and edge, respectively, sets of G. For a vertex $v \in V(G)$, the incidence neighborhood of v, denoted by $\operatorname{IN}(v)$, is the set $\{(v, e): e \in$ $E(G)$ and v is incident with $e\} \cup\{(u, e): e=v u \in E(G)\}$. The incidences in the former set are the near-incidences of vertex v and the incidences in the latter set are farincidences of vertex v. Two incidences $\left(v_{1}, e_{1}\right)$ and $\left(v_{2}, e_{2}\right)$

[^0]are adjacent if one of the following conditions holds: (i) $v_{1}=v_{2}$, (ii) $e_{1}=e_{2}$, or (iii) either v_{2} is the other endpoint of e_{1} or v_{1} is the other endpoint of e_{2}. An incidence coloring σ of G is a mapping from $I(G)$ to a color set $\{1, \ldots, n(\sigma)\}$ such that all adjacent incidences of G are assigned different colors, where $n(\sigma)$ denotes the number of colors used by σ. The incidence coloring number of G, denoted by $\chi_{i}(G)$, is the smallest number k such that G admits an incidence coloring σ with $n(\sigma)=k$.

The incidence coloring problem was introduced by Brualdi and Massey in [4]. They also conjectured that any graph G can be incidence-colored by $\Delta(G)+2$ colors, where $\Delta(G)$ denotes the maximum degree of G. However, their conjecture was disproved by Guiduli [6]. In [6], Guiduli also showed that the incidence coloring problem is a special case of directed star arboricity which was introduced by Algor and Alon [1,2]. Note that the directed star arboricity problem has applications in the WDM (Wavelength Division Multiplexing) of a star optical network [3].

For graphs G_{1} and G_{2}, the Cartesian product $G_{1} \square G_{2}$ has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, and two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent in $G_{1} \square G_{2}$ if and only if either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(G_{2}\right)$ or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E\left(G_{1}\right)$. Let $G=G_{1} \square G_{2}$. For a vertex $u \in V\left(G_{1}\right)$, denote by G_{2}^{u} the subgraph of G induced by all vertices (u, x) for $x \in V\left(G_{2}\right)$. Similarly, for a vertex $v \in V\left(G_{2}\right)$, the subgraph G_{1}^{v} of G is the graph induced by all vertices (x, v) for $x \in V\left(G_{1}\right)$.

The incidence coloring problem on the Cartesian product of some special classes of graphs has been extensively investigated, e.g., $P_{m} \square P_{n}$ [7,8], $P_{m} \square C_{n}$ [5,8], $C_{m} \square C_{n}$ [10], $P_{m} \square K_{n, h}$ [5], and Q_{n} [9], where P_{m} denotes a path of m vertices, C_{n} a cycle of n vertices, $K_{n, h}$ a complete bipartite graph with two vertex sets of n and h, respectively, vertices and Q_{n} the n-dimensional hypercube. In [11], Sun and Shiu showed that
$\chi_{i}\left(G_{1} \square G_{2}\right) \leqslant \chi_{i}\left(G_{1}\right)+\chi_{i}\left(G_{2}\right)$.
Definition 1.1. The spectrum of a vertex v with respect to incidence coloring σ, denoted by $S_{\sigma}(v)$, is the set consisting of all colors assigned to the incidences in $\operatorname{IN}(v)$. When the context is clear, we write $S(v)$ instead. Furthermore, let $s(\sigma)=\max \left\{\left|S_{\sigma}(v)\right|: v \in V(G)\right\}$.

In this paper, we show that if $n\left(\sigma_{1}\right) \geqslant n\left(\sigma_{2}\right)-s\left(\sigma_{2}\right)$, then there exists an incidence coloring of $G_{1} \square G_{2}$ which uses $n\left(\sigma_{1}\right)+s\left(\sigma_{2}\right)$ colors; otherwise, there exists an incidence coloring of $G_{1} \square G_{2}$ using $n\left(\sigma_{2}\right)$ colors, where σ_{i} is an incidence coloring of G_{i} for $i \in\{1,2\}$. Based on the result above, we show that,

$$
\begin{aligned}
\chi_{i}\left(G_{1} \square G_{2}\right) \leqslant & \min \left\{\chi_{i}\left(G_{1}\right)-\delta\left(\sigma_{2}\right)+n\left(\sigma_{2}\right),\right. \\
& \left.\chi_{i}\left(G_{2}\right)-\delta\left(\sigma_{1}\right)+n\left(\sigma_{1}\right)\right\},
\end{aligned}
$$

where σ_{i} is an incidence coloring of G_{i} with $s\left(\sigma_{i}\right)$ minimum among all incidence colorings of G_{i} for $i \in$ $\{1,2\}, \delta\left(\sigma_{1}\right)=\min \left\{\chi_{i}\left(G_{2}\right), n\left(\sigma_{1}\right)-s\left(\sigma_{1}\right)\right\}$, and $\delta\left(\sigma_{2}\right)=$ $\min \left\{\chi_{i}\left(G_{1}\right), n\left(\sigma_{2}\right)-s\left(\sigma_{2}\right)\right\}$. Moreover, we also show that, for integer $p \geqslant 1$,
$\chi_{i}\left(Q_{n}\right)= \begin{cases}n+1 & \text { if } n=2^{p}-1 \\ n+2 & \text { otherwise. }\end{cases}$

2. Main results

Let σ_{1} and σ_{2} be incidence colorings of G_{1} and G_{2}, respectively, and $G=G_{1} \square G_{2}$. In Algorithm A, we describe how to find an incidence coloring of $G_{1} \square G_{2}$ which uses $n\left(\sigma_{1}\right)+s\left(\sigma_{2}\right)$ colors if $n\left(\sigma_{1}\right) \geqslant n\left(\sigma_{2}\right)-s\left(\sigma_{2}\right)$; otherwise, $n\left(\sigma_{2}\right)$ colors will be used. For brevity, let $n_{i}=n\left(\sigma_{i}\right)$ and $s_{i}=s\left(\sigma_{i}\right)$ for $i \in\{1,2\}$ and let $\eta_{1}=\min \left\{n_{2}, n_{1}-s_{1}\right\}$ and $\eta_{2}=\min \left\{n_{1}, n_{2}-s_{2}\right\}$. Furthermore, when $n_{2}=\chi_{i}\left(G_{2}\right)$ (respectively, $n_{1}=\chi_{i}\left(G_{1}\right)$), we use δ_{1} (respectively, δ_{2}) to denote η_{1} (respectively, η_{2}).

Example 1. We use $Q_{11}=Q_{7} \square Q_{4}$ as an example to illustrate Algorithm A (see Fig. 1). In Step 1 of Algorithm A, by using the algorithm in [9], we have an incidence coloring σ_{1} for Q_{7}. Note that, by using σ_{1}, the spectrum $S(v)=$

```
Algorithm A: An incidence coloring of Cartesian prod-
uct graphs.
    Input: Incidence colorings \(\sigma_{1}\) and \(\sigma_{2}\) of \(G_{1}\) and \(G_{2}\), respec-
            tively.
    Output: An incidence coloring of \(G_{1} \square G_{2}\).
    Step 1. /* Initialization. */
        For each \(u \in V\left(G_{1}\right)\), assign a color to each incidence of
        \(G_{2}^{u}\) by \(\sigma_{2}\).
        For each \(v \in V\left(G_{2}\right)\), assign a color to each incidence of
        \(G_{1}^{v}\) by \(\sigma_{1}\).
    Step 2. /* Adjust the colors in \(G_{2}^{u}\) for each \(u \in V\left(G_{1}\right) .{ }^{* /}\)
        Add \(n_{1}-\eta_{2}\) to the color assigned to each incidence in
        \(G_{2}^{u}\) for each \(u \in V\left(G_{1}\right)\).
    Step 3. /* Adjust the colors in \(G_{1}^{v}\) for each \(v \in V\left(G_{2}\right) .{ }^{*} /\)
        For each vertex \((u, v)\) in \(G\), if there are two adjacent
        incidences of \(\operatorname{IN}((u, v))\) having the same color, say \(t\),
        then replace all incidences with color \(t\) in \(G_{1}^{v}\) by a
        color in \(\left\{n_{1}+1, \ldots, n_{1}-\eta_{2}+n_{2}\right\}\) which is not used
        in \(\operatorname{IN}((u, v))\).
    Step 4. /* Output. */
        Let \(\sigma\) be the mapping of incidences and colors obtained
        in the previous steps.
        Output \(\sigma\).
```

$\{1, \ldots, 8\}$ for every vertex v in Q_{7}. There exists an incidence coloring σ_{2} for Q_{4} with $n_{2}=8$ and $s\left(\sigma_{2}\right)=5$ (see Fig. 1(a)). This yields $\eta_{2}=\min \left\{n_{1}, n_{2}-s_{2}\right\}=\min \{8,8-$ $5\}=3$. In Step 2 of Algorithm A, add $n_{1}-\eta_{2}=8-3=5$ to every color assigned to the incidences of Q_{4}^{u} for $0 \leqslant$ $u \leqslant 127$ (see Fig. 1(b)). In Step 3 of Algorithm A, the incidence colors in Q_{7}^{v} for $0 \leqslant v \leqslant 15$ have to be adjusted accordingly. For example, for every vertex $(u, 0)$ in Q_{7}^{0} with $0 \leqslant u \leqslant 127$, there are adjacent incidences of $\operatorname{IN}((u, 0))$ using the same colors in $\{6,7,8\}$. Thus we have to adjust the colors assigned to the incidences in Q_{7}^{0} with colors 6,7 , and 8 to avoid two adjacent incidences having the same color. Note that $\left\{n_{1}+1, \ldots, n_{1}-\eta_{2}+n_{2}\right\}=\{9, \ldots, 13\}$. We can find that colors 11,12 , and 13 are not used in $\operatorname{IN}((u, 0))$ for $0 \leqslant u \leqslant 127$. Thus we can use colors 11,12 , and 13 to replace colors 6,7 , and 8 , respectively, in Q_{7}^{0}. Similarly, all incidences with colors 6,7 , and 8 in Q_{7}^{1} are adjusted to 10,12 , and 13 , respectively; all incidences with colors 6,7 , and 8 in Q_{7}^{3} are adjusted to 10,11 , and 12 , respectively; and so on. For every $S(u, v)$ in Fig. 1(c), the former set contains the colors used in Q_{7}^{v} and the latter contains the colors used in Q_{4}^{u}.

Now we are at a position to prove that the function σ obtained by Algorithm A is an incidence coloring of $G_{1} \square G_{2}$ with $n(\sigma)=n_{1}-\eta_{2}+n_{2}$.

Lemma 2.1. The function σ obtained by Algorithm A is an incidence coloring of $G_{1} \square G_{2}$.

Proof. We have to ensure that, in Step 3 of Algorithm A, there are enough colors in $\left\{n_{1}+1, \ldots, n_{1}-\eta_{2}+n_{2}\right\}$ which are not used in $\operatorname{IN}((u, v))$ so that we can replace all those adjacent incidences with the same color in G_{1}^{v}.

First we consider the case where η_{2} is equal to n_{1}, namely $n_{2}-s_{2}>n_{1}$. If $s_{2} \geqslant n_{1}$, then all n_{1} colors used in the incidences of G_{1}^{v} have to be replaced (see Fig. 2(a)).

https://daneshyari.com/en/article/428501

Download Persian Version:

https://daneshyari.com/article/428501

Daneshyari.com

[^0]: th This research was partially supported by National Science Council under Contract NSC 101-2221-E-011-038-MY3.

 * Corresponding author at: Department of Information Management, National Taiwan University of Science and Technology, 43, Section 4, KeeLung Road, Taipei, 10607, Taiwan.

 E-mail address: ylwang@cs.ntust.edu.tw (Y.-L. Wang).

