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In this paper we have studied the commutative properties of general Discrete Fourier 
Transform (DFT) matrices Un . The problem is to characterize matrices An that commute 
with Un . We find complete solutions for An up to n = 5 theoretically. We also provide a 
major result towards the complete solutions for general n. To find An which commutes 
with Un one needs to solve a system of n2 linear equations of n2 variables. We reduced 
this problem into solving two different systems of linear equations of more or less n2/4
many variables and same number of equations. To do this reduction we use the idea of 
symmetric, skew symmetric matrices as well as we consider the set of matrices as a vector 
space and use direct sum of subspaces.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Discrete Fourier Transform (DFT) is one of the most 
important discrete transform, used to perform Fourier 
analysis in many practical applications. In digital signal 
processing, the function is any quantity or signal that 
varies over time, such as the pressure of a sound wave, 
a radio signal, or daily temperature readings, sampled over 
a finite time interval (often defined by a window function). 
In image processing, the samples can be the values of pix-
els along a row or column of a raster image. The DFT is 
also used to solve partial differential equations, and to per-
form other operations such as convolutions or multiplying 
large integers.

Quantum Fourier Transform (QFT) is the quantum ana-
logue of the Discrete Fourier Transform (DFT). QFT has 
applications in quantum computation and information, see 
[3,4] for a detailed discussion in this area. The QFT can be 
seen as a linear transformation on quantum bits. Fourier 
transformation has applications in quantum phase esti-
mation and hidden subgroup problem. QFT also performs
efficiently on quantum computational framework. Shor’s 
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famous algorithm [9] for polynomial time factoring and 
discrete logarithm are based on Fourier transform, which is 
a generalization of the Hadamard transform in higher di-
mension. One important quantum gate in communication 
science is the Hadamard gate [3,4].

One cannot design a universal Hadamard gate for an 
arbitrary unknown quantum bit (qubit) because linearity 
does not allow linear superposition of an unknown state 
|ψ〉 with its orthogonal complement |ψ ′〉 [8]. Maitra and 
Parashar have shown how one can construct a certain class 
of qubit states, for which the Hadamard gate works as it 
is [6]. Maitra and Sarkar identified that the result in [6] is 
not a complete characterization of such qubits and they do 
more work on that [5].

The qubits can be represented as the superposition of 
|0〉 and |1〉 in the form |ψ〉 = a|0〉 + b|0〉, where a and b
are complex numbers such that |a|2 + |b|2 = 1. The qubits 
of higher dimensions are called qudits. An n-dimensional 
qudit can be represented as |ψt〉 = at,0|0〉 + at,1|1〉 + · · · +
at,n−1|n − 1〉, where at,0, at,1, . . . , at,n−1 are all complex 
numbers and 

∑n−1
j=0 |at, j|2 = 1.

The Discrete Fourier Transform is described as trans-
forming a set x0, . . . , xn−1 of n complex numbers into a 
set of complex numbers y0, . . . , yn−1 defined by y j =
Un(x j) = 1√

n

∑n−1
k=0 e

2π i jk
n xk . The Quantum Fourier Trans-
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form (QFT) is the counterpart of this transformation and 
is defined as follows.

Un(| j〉) = 1√
n

n−1∑
k=0

e
2π i jk

n |k〉. (1)

The DFT/QFT matrix can be expressed in terms of an n × n
matrix Un defined as follows,

Un = 1√
n
((ω

i· j
n ))i, j=0,1,2,...,n−1

=

⎡
⎢⎢⎢⎣

ω0·0
n ω0·1

n . . . ω
0·(n−1)
n

ω1·0
n ω1·1

n . . . ω
1·(n−1)
n

. . . . . . . . . . . .

ω
(n−1)·0
n ω

(n−1)·1
n . . . ω

(n−1)·(n−1)
n

⎤
⎥⎥⎥⎦ ,

where ωn = e
2π i

n .
Thus DFT/QFT is a unitary transformation expressed by 

the unitary matrix Un . Given a set of qudits ψ0, ψ1, . . . ,
ψn−1, after application of QFT, one can get another set of 
qudits ψ ′

0, ψ
′
1, . . . , ψ

′
n−1. From the Plancherel theorem [10]

it is known that the dot product of two vectors is pre-
served under a unitary DFT/QFT transformation. Thus if ψu
and ψv are orthogonal then ψ ′

u and ψ ′
v will be orthogonal 

too.
One application of such states is available other than 

the much used computational bases, less restriction can 
be provided on the sources producing qubits, qutrits or 
qudits in general. As an example, one can look at the tra-
ditional BB84 protocol [1]. A variant of the BB84 protocol 
with three-dimensional quantum states or qutrits has been 
studied in [2] for further security against symmetric at-
tacks. All the applications are in two or three dimensions. 
If we want to generalized these applications to higher di-
mensions, we need following generalization:

Consider an n-dimensional qudit can be represented 
as |ψt〉 = at,0|0〉 + at,1|1〉 + at,2|2〉 + . . . + at,n−1|n − 1〉, 
where at,0, at,1, at,2, . . . , at,n−1 are all complex numbers 
and 

∑n−1
j=0 |at, j|2 = 1. We want to characterize the qudits 

|ψ0〉, |ψ1〉, . . . , |ψn−1〉 such that

Un(|ψ j〉) = 1√
n

n−1∑
k=0

e
2π i jk

n |ψk〉. (2)

This is true when |ψ0〉 = |0〉, |ψ1〉 = |1〉, . . . , |ψn−1〉 =
|n − 1〉. However, it is not true in general. Thus, it is an 
important theoretical question to characterize such ensem-
bles as those states can be applied in a similar manner as 
the standard basis and can be used in the same quantum 
gates that are already available.

Looking at Un as a matrix as we have described above, 
the problem can be seen as characterizing

An =

⎡
⎢⎢⎣

a0,0 a1,0 . . . an−1,0
a0,1 a1,1 . . . an−1,1
. . . . . . . . . . . .

a0,n−1 a1,n−1 . . . an−1,n−1

⎤
⎥⎥⎦ ,

such that Un An = AnUn [6]. To the best of our knowledge, 
any reference for complete characterization is not avail-
able. In this paper we give some characterization of An . 

In this paper we consider only the commutativity part. For 
n = 2, problem is very easy and can solved by easy calcula-
tions, see [5]. In [5] authors give complete characterization 
up to n = 3 and 4, but they use computer software [7] to 
solve the required system of linear equations. In this paper 
we complete characterization up to n = 5 theoretically. We 
also provide a major result for matrices An for all values 
of n. Throughout the paper the matrices Un and An denote 
the above matrices.

2. Characterization of the matrices An

In this section we first state some well known results 
on the unitary DFT matrices Un , then we discuss our con-
tribution to characterize the matrices which commute with 
unitary DFT matrices Un . Now and onward we say i − 1-th
row instead of i-th row, e.g., consider the first row of Un , 
i.e., (1 1 . . . 1), we call this row as 0-th row. Also by 
means of n-th row we mean 0-th row. Similar notations 
are applicable for columns also.

Note that there are n2 variables and n2 equations in 
Un An = AnUn . For i, j = 0, 1, . . . , n −1 we call the variables 
in An as aij and the equation determine by the equality of 
(i, j)-th elements of Un An and (i, j)-th elements of AnUn

as Ei, j . Throughout the paper if any suffix is n then it will 
be considered as 0, e.g. ann should be considered as a00. In 
this paper our aim is to reduce the number of variables as 
well as the number of equations, using relations between 
the variables. It would also be helpful if we could identify 
some free variables, which are not involved in any of the
equations (which have to be solved).

We need some well known results on unitary DFT ma-
trices Un , which can be easily verified, to characterize An . 
The results are as follows:

Result 1. If Un = ((ω
(i−1)·( j−1)
n )) = ((uij)) then U∗

n = U 3
n =

U−1
n = ((u−1

i j )) = ((ω
−(i−1)·( j−1)
n )) and

U 2
n =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0
0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 1 · · · 0 0 0
0 1 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Next we state our contribution for characterization 
of An . We prove some theoretical results on An when 
it commutes with Un . We observed that U 2

n has a nice 
form, also when An commutes with Un it should commute
with U 2

n . In the following results An is fully characterized 
when it commutes with U 2

n , and this condition is a nec-
essary condition for An when it commutes with Un . This 
theorem reduced almost half of the variables and the same 
number of equations.

Theorem 1. If An = ((aij))i, j=0(1)n−1 then U 2
n An = AnU 2

n if 
and only if aij = an−i,n− j , for all i, j = 0, 1, . . . , n − 1.
Hence if Un An = AnUn then aij = an−i,n− j , for all i, j =
0, 1, . . . , n − 1.
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