Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

CrossMark

On Secure Domination in Graphs

Houcine Boumediene Merouane*, Mustapha Chellali

LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria

ARTICLE INFO

Article history: Received 28 January 2015 Received in revised form 13 May 2015 Accepted 15 May 2015 Available online 21 May 2015 Communicated by Ł. Kowalik

Keywords: Combinatorial problems Computational complexity Secure domination Independence Domination

ABSTRACT

A set $D \subset V$ of a graph G = (V, E) is a dominating set of G if every vertex not in D is adjacent to at least one vertex in D. A secure dominating set S of a graph G is a dominating set with the property that each vertex $u \in V \setminus S$ is adjacent to a vertex $v \in S$ such that $(S \setminus \{v\}) \cup \{u\}$ is a dominating set. The secure domination number $\gamma_S(G)$ equals the minimum cardinality of a secure dominating set of G. We first show that the problem of computing the secure domination number is NP-complete for bipartite and split graphs. Then we present bounds relating the secure domination number to the domination number $\gamma(G)$, the independence number $\beta_0(G)$ and the independent domination number i(G). In particular, we prove that $\gamma_S(G) \leq \gamma(G) + \beta_0(G) - 1$ if G is an arbitrary graph, $\gamma_S(G) \leq \frac{3}{2}\beta_0(G)$ if G is triangle-free, and $\gamma_S(G) \leq \beta_0(G)$ if G has girth at least six. Finally, we show for the class of trees T that $\gamma_S(T) \geq i(T)$ and $\gamma_S(T) > \beta_0(T)/2$. The last result answers the question posed by Mynhardt at the 22nd Clemson mini-Conference, 2007

© 2015 Published by Elsevier B.V.

1. Introduction

Let G = (V, E) be a simple graph. The open neighborhood of a vertex $v \in V$ is the set $N(v) = \{u \in V : uv \in E\}$ and the closed neighborhood of v is the set $N[v] = \{v\} \cup N(v)$. For a set $X \subseteq V$, we denote by G[X] the subgraph of G induced by X. The open and closed neighborhoods of X are $N(X) = \bigcup_{x \in X} N(x)$ and $N[X] = X \cup N(X)$, respectively. An *S*-external private neighbor of a vertex $v \in S$ is a vertex $u \in V \setminus S$ which is adjacent to v but to no other vertex of S. The set of all S-external private neighbors of $v \in S$ is called the *S*-external private neighbor set of v and is denoted epn(v, S). The degree of v is the cardinality of its open neighborhood. A vertex of degree one is called a *leaf* and its neighbor is called a *stem*.

A vertex in a graph G is said to dominate itself and every vertex adjacent to it. A subset D of V is said to be

* Corresponding author.

E-mail addresses: boumedienemerouane@yahoo.fr

http://dx.doi.org/10.1016/j.ipl.2015.05.006 0020-0190/© 2015 Published by Elsevier B.V. a dominating set of *G* if every vertex not in *D* is adjacent to at least one vertex in *D*. The domination number $\gamma(G)$ equals the minimum cardinality of a dominating set in *G*. A set $S \subset V$ is independent if no two vertices in *S* are adjacent. The minimum and maximum cardinalities, respectively, of a maximal independent set in *G* equal the independent domination number i(G) and the independence number $\beta_0(G)$, respectively.

A subset $S \subseteq V$ is a 2-dominating set if every vertex of $V \setminus S$ has at least two neighbors in S and a *double dominating set* if S is a 2-dominating set and the subgraph induced by S has no isolated vertex. The 2-domination number $\gamma_{2}(G)$ and the *double domination number* $\gamma_{\times 2}(G)$ represent the cardinality of a minimum 2-dominating set and, respectively, of a minimum double dominating set of G. Clearly, $\gamma_{\times 2}(G) \ge \gamma_{2}(G)$ holds for every graph G with no isolated vertices.

A secure dominating set (SDS) *S* of a graph *G* is a dominating set with the property that each vertex $u \in V \setminus S$ is adjacent to a vertex $v \in S$ such that $(S \setminus \{v\}) \cup \{u\}$ is a dominating set. The secure domination number $\gamma_S(G)$ equals

⁽H. Boumediene Merouane), m_chellali@yahoo.com (M. Chellali).

the minimum cardinality of a secure dominating set of *G*. Secure domination was introduced by Cockayne et al. [5], and is studied, for example, in [5,7,9]. For any parameter $\mu(G)$ associated with a graph property \mathcal{P} , we refer to a set of vertices with Property \mathcal{P} and cardinality $\mu(G)$ as a $\mu(G)$ -set.

A *tree* is a connected graph that contains no cycle. We denote the *star* consisting of one central vertex and k leaves as $K_{1,k}$. The *girth* of a graph G is the length of a shortest cycle (if any) in G. If the graph does not contain any cycles, then its girth is defined to be infinity. If a graph G does not contain an induced subgraph that is isomorphic to some graph F, then we say that G is *F*-free. In particular, if $F = K_{1,3}$, we say that G is *claw-free*, and if $F = K_3$, we say that G is *triangle-free*. A *clique* of a graph G is a complete subgraph of G. A graph is *split* if its vertex set can be partitioned into a clique and an independent set.

In this paper, we show that the problem of computing the secure domination number is in the NP-complete class, even when restricted to bipartite graphs and split graphs. Then we prove that for every graph G, $\gamma_s(G) \leq \gamma(G) + \beta_0(G) - 1$, which improves a previous bound of Klostermeyer and Mynhardt [7]. Bounds relating the secure domination to the independence number are also presented for triangle-free graphs. More precisely, we show that if G is a triangle-free graph, then $\gamma_s(G) \leq \frac{3}{2}\beta_0(G)$ and if G has girth at least six, then $\gamma_s(G) \leq \beta_0(G)$. For the class of trees T, we show that $\gamma_s(T) \geq i(T)$ and $\gamma_s(T) > \beta_0(T)/2$.

Before presenting our results, we need to recall some results that are important for our investigations. We begin by giving a fundamental property of secure dominating sets due to Cockayne et al. [5].

Proposition 1.1. (See Cockayne et al. [5].) If *D* is a secure dominating set of a graph *G*, then for every vertex $v \in D$, the sub-graph induced by epn(v, D) is complete.

Theorem 1.2. For every nontrivial tree T,

i) (See Blidia et al. [3].) $\gamma_{\times 2}(T) \ge 2i(T)$.

ii) (See Blidia et al. [2].) $\gamma_2(T) \ge \beta_0(T)$, with equality if and only if T has a unique $\gamma_2(T)$ -set that also is a $\beta_0(T)$ -set.

2. Complexity results

Our aim in this section is to establish the NP-complete results for the secure domination problem in split graphs and in bipartite graphs. For this purpose, we use a transformation from the domination problem.

DOMINATION PROBLEM (DOM). Instance: Graph G and a positive integer k. Question: Does G have a dominating set of cardinality at most k?

Garey and Johnson [6] were the first to show that the domination problem is NP-Complete for arbitrary graphs. Thereafter Bertossi [1] showed that the problem remains NP-Complete even when restricted to bipartite graphs or split graphs.

Now let us consider the following decision problem, to which we shall refer as SDOM.

SECURE DOMINATION PROBLEM (SDOM) **Instance:** Graph G^* and a positive integer k^* . **Question:** Does G^* have a secure dominating set of cardinality at most k^* ?

Theorem 2.1. Problem SDOM is NP-Complete for split graphs.

Proof. Clearly, SDOM is a member of \mathcal{NP} , since we can check in polynomial time whether or not a set of vertices is a secure dominating set of *G*. Now let us show how a polynomial time algorithm for SDOM could be used to solve DOM in polynomial time. Given a positive integer *k* and a split graph *G* whose vertex set is partitioned into a clique *Q* and an independent set *I*, we construct a split graph *G** with clique *Q** and independent set *I** by adding a path $P_2: x-y$ such that *x* is adjacent to all vertices of *G*. Clearly *y* is a leaf in *G** and *x* its stem. It is worth pointing out that *G** is a split graph, where $V(Q^*) = V(Q) \cup \{x\}$ and $I^* = I \cup \{y\}$. We also note that $|V(G^*)| = |V(G)| + 2$ and $|E(G^*)| = |E(G)| + |V(G)| + 1$, and so *G** can be constructed from *G* in polynomial time.

Next, we shall show that G has a dominating set D with $|D| \le k$ if and only if G^* has a secure dominating set D^* with $|D^*| < k^* = k + 1$. Let D be a dominating set of size at most k. Then it is evident that $D^* = D \cup \{x\}$ is a secure dominating set of G^* of cardinality $|D| + 1 \le k + 1$. Conversely, suppose that G^* has a secure dominating set D^* with $|D^*| \le k^* = k + 1$. Let $D' = D^* \cap V(G)$. It is clear that $|D^* \cap \{x, y\}| \ge 1$ and hence $|D'| \leq k$. If D' dominates G, then D = D' and we are finished. Suppose now that D' is not a dominating set of G. Let A be the set of vertices of G having no neighbor in D' and let $w \in A$. Since A is securely dominated by D^* in G^* , we deduce that $x \in D^*$ and $A \subset epn(x, D^*)$. Since $epn(x, D^*)$ induces a complete graph, by Proposition 1.1, it follows that $y \in D^*$, and so $|D'| = |D^*| - 2$. Now it is clear that $D = D' \cup \{w\}$ is a dominating set of G with $|D| = |D' \cup \{w\}| \le (k^* - 2) + 1 = k.$

Theorem 2.2. Problem SDOM is NP-Complete for bipartite graphs.

Proof. Clearly, SDOM is a member of \mathcal{NP} . We next show how a polynomial time algorithm for SDOM could be used to solve DOM in polynomial time. Given a bipartite graph *G* with partite sets *X* and *Y*, and a positive integer *k*, we construct a bipartite graph *G*^{*} with partite sets *X*^{*} and *Y*^{*} by adding two disjoint paths *P*₂, say *x*₁-*x*₂ and *y*₁-*y*₂ such that *x*₁ is adjacent to all *X* and *y*₁ is adjacent to all *Y*. Note that *x*₂ and *y*₂ are leaves in *G*^{*}. Clearly *G*^{*} is a bipartite graph, where $|V(G^*)| = |V(G)| + 4$ and $|E(G^*)| = |E(G)| + |V(G)| + 2$, and so *G*^{*} can be constructed from *G* in polynomial time.

We will show that *G* has a dominating set *D* with $|D| \le k$ if and only if *G*^{*} has a secure dominating set *D*^{*} with $|D^*| \le k^* = k + 2$. Let *D* be a dominating set of *G* of size at most *k*. Then clearly $D^* = D \cup \{x_1, y_1\}$ is a secure

Download English Version:

https://daneshyari.com/en/article/428505

Download Persian Version:

https://daneshyari.com/article/428505

Daneshyari.com