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We describe O (n) time algorithms for finding the minimum weighted dominating induced
matching of chordal, dually chordal, biconvex, and claw-free graphs. For the first three
classes, we prove tight O (n) bounds on the maximum number of edges that a graph having
a dominating induced matching may contain. By applying these bounds, and employing
existing O(n + m) time algorithms we show that they can be reduced to O(n) time.

For claw-free graphs, we describe a variation of the existing algorithm for solving the
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unweighted version of the problem, which decreases its complexity from O (n2) to O(n),
while additionally solving the weighted version. The same algorithm can be easily modified
to count the number of DIM’s of the given graph.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider undirected simple graphs G, denoting by
V(G) and E(G), respectively, the sets of vertices and edges
of G, n=|V(G)| and m = |E(G)|. For v € V(G), N(v) rep-
resents the set of neighbors of v € V(G), while N[v] =
N(v)U{v}. For S C V(G), N(S) =UyesN(v). We say a ver-
tex v € V(G) such that N[v] = V(G) is universal. Denote
by G[S] the subgraph of G induced by the vertices of S.
If G[S] is a O-regular graph then S is an independent set,
if it is a 1-regular graph then S is the set of vertices of
an edge independent set. By G + H we denote the disjoint
union of two graphs G and H. We say that a graph G is
H-free if G does not contain H as an induced subgraph.
A vertex v is called simplicial if all its neighbors are adja-
cent to each other. An edge independent set is also known
as an induced matching. For convenience, we may write in-
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duced matching to refer either to the set of edges or to its
corresponding vertex set. Finally, we also employ the nota-
tion matching with its usual meaning of a set of pairwise
non-adjacent edges.

Say that an edge e € E(G) dominates itself and every
other edge adjacent to it. An edge dominating set of G is a
set of edges E’ € E(G), such that every e € E(G) is dom-
inated by some edge of E’. If each e € E(G) is dominated
by exactly one edge of E’ then E’ is an efficient edge dom-
inating set. In the latter situation, E’ defines an induced
matching, while the set of vertices not incident to E’ form
an independent set. For this reason, an efficient edge dom-
inating set is also called dominating induced matching (DIM).
Not every graph admits a DIM. The DIM problem is to deter-
mine whether a graph has such a matching, and is known
to be NP-complete [9]. We will consider graphs G with
a weighting 2, that assigns to each edge vw € E(G) a
non-negative finite weight w(vw). The aim is to find the
minimum weight of a dominating induced matching of G,
if any. We name this problem as DIMg (G). Some of the
existing algorithms for solving DIM problems are [3-5,10].
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Since the number of edges of any DIM of G, if existing,
is invariant, it is straightforward to generalize the problem
for edges with negative weights too.

Following the definition, the DIM problem can be
viewed as to decide whether there is a partition of the ver-
tices into two sets (say a coloring of the vertices in white
and black) such that the white set is an independent set
while the black one induces a 1-regular graph. Moreover,
the black set defines a DIM of the graph [7]. A coloring is
partial if only part of the vertices of G have been assigned
colors, otherwise it is total. A black vertex is single if it
has no black neighbor, and is paired if it has exactly one
black neighbor. Each coloring, partial or total, can be valid
or invalid.

A partial coloring is valid whenever any two white
vertices are non-adjacent and each black vertex is either
paired, or is single having some uncolored neighbor. A to-
tal coloring is valid whenever any two white vertices are
non-adjacent and each black vertex is paired.

A valid partial coloring I' might possibly extend into
a coloring I'" O I' by iteratively applying a set of color-
ing rules, compatible with I'. In general, such rules would
color some uncolored vertex v, whose color is uniquely de-
termined by the colors of I'. For instance, any uncolored
neighbor of a white vertex must be colored as black, oth-
erwise the coloring would be invalid. See [7] for a set of
such rules. We refer to this process as propagation.

We prove that any chordal graph containing a DIM has
at most 2n — 3 edges. Counting the edges and applying the
O(n + m) time algorithm by Lu, Ko and Tang [11] lead
to an O(n) time algorithm. For dually chordal graphs, by
employing the similarity result chordal - dually chordal for
DIM’s by Brandstddt, Leitert and Rautenbach [2] also leads
to solving the DIM problem in O(n) time. For biconvex
graphs, we prove that any K3 3-free convex graph contains
at most 2n — 4 edges. Additionally, that any biconvex graph
containing a DIM is K33-free. Using these two results,
counting the number of edges of the given graph and em-
ploying the O (n+m) time algorithm by Brandstddt, Hundt
and Nevries [1] leads to solving the DIM problem for bi-
convex graphs in O(n) time. Finally, for claw-free graphs,
we describe a variation of the algorithm by Cardoso, Kor-
pelainen and Lozin [7]. The latter solves the DIM problem,
without weights, in O(n?) time, while the presently pro-
posed algorithm requires O (n) time for solving DIMg, (G).

A conference version of this paper has been presented
at LATIN’ 2014 [6].

2. Chordal, dually chordal and biconvex graphs

In this section, we remark that computing DIMg, (G) for
any graph G which is chordal, dually chordal or biconvex
requires no more than O (n) time.

Lemma 1. (See [1].) If G contains a K4 then G has no DIM’s.

Lemma 2. Every K4-free chordal graph G with at least 2 vertices
has at most 2n — 3 edges. The bound is tight even if G is an
interval graph.

Proof. By induction on the number of vertices. For n =2,
the result is trivial. Suppose the bound is valid for graphs
with n — 1 vertices, n > 3. Let G be an n-vertex chordal
graph and v a simplicial vertex of it. Since |E(G)| =
[E(G\ {v})| +d(v), where d(v) denotes the degree of v, by
the induction hypothesis, the number of edges of G\ {v} is
bounded by 2n — 5. Since G is K4-free, d(v) < 2, therefore
|[E(G)|<2n—542=2n-3.

An interval graph having two universal vertices and the
remaining ones having degree 2 has no K4 and contains
2n — 3 edges, meaning that the bound is tight for interval
graphs. O

Corollary 3. The DIMg, (G) problem can be solved in O (n) time
for (dually) chordal graphs.

Proof. Let G be a given chordal graph. First, count the
number of edges of G, up to a limit of 2n — 3. If the
bound has been exceeded then stop answering that G has
no DIM’s. Otherwise, apply the algorithm [11] which solves
DIMg(G) in O(n) time. Finally, if a graph has a DIM then
it is chordal if and only if it is dually chordal [2]. Con-
sequently, DIM (G) can also be solved in O(n) time for
dually chordal graphs. O

Next, consider solving DIMg; (G) for biconvex graphs.

An ordering < of X in a bipartite graph G = (X,Y, E)
has the interval property if for every vertex y € Y, the ver-
tices of N(y) are consecutive in the ordering < of X. A bi-
partite graph (X, Y, E) is convex if there is an ordering of
X or Y that fulfills the interval property. Furthermore if
there are orderings for both X and Y which fulfill the in-
terval property the graph is biconvex.

Lemma 4. Let G be a convex bipartite graph having no subgraph
isomorphic to K3 3. Then G contains at most 2n — 4 edges, for
n>3.

Proof. By induction on n. If n = 3, the graph has at most 2
edges, satisfying the bound. Let G be an arbitrary K3 3-free
convex graph, v its minimum degree vertex and G’ the
graph obtained from G by removing v.

e d(v) <2: Clearly, G’ is also K3 3-free. By inductive hy-
pothesis, G’ has at most 2n — 6 edges. Consequently,
G has at most 2n — 6 +d(v) <2n — 4 edges.

e d(v) > 2: Every vertex in G has degree at least 3. Let
G = (X,Y,E) where X has the interval property. Thus
for each vertex y € Y, N(y) consists of vertices that
are consecutive. Let {x1,..., X} be the ordering < of
X and w.lo.g. let {y1, y2, y3} € N(x1). Since y1, y2, ¥3
have at least 3 neighbors and X has the interval prop-
erty, it follows that {xy,x3} € N(y1) N N(y2) N N(y3).
Therefore {x1, x2, X3, y1, ¥2, ¥3} induces a K33, a con-
tradiction.

Hence, G contains indeed at most 2n —4 edges. This bound
is tight, K2 ;2 is an example. 0O

We remark that bipartite graphs, not necessarily con-
vex, which do not contain K33 as a minor also have at
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