
Information Processing Letters 114 (2014) 556–560

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Faster deterministic Feedback Vertex Set

Tomasz Kociumaka, Marcin Pilipczuk ∗

Institute of Informatics, University of Warsaw, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 September 2013
Received in revised form 4 December 2013
Accepted 1 May 2014
Available online 9 May 2014
Communicated by B. Doerr

Keywords:
Algorithms
Fixed-parameter algorithm
Branching
Feedback Vertex Set

We present a new deterministic algorithm for the Feedback Vertex Set problem parameter-
ized by the solution size. Our algorithm runs in O∗((2 + φ)k) time, where φ < 1.619 is the
golden ratio, surpassing the previously fastest O∗((1+2

√
2)k)-time deterministic algorithm

due to Cao et al. (2010) [6]. In our development we follow the approach of Cao et al.;
however, thanks to a new reduction rule, we obtain not only better dependency on the
parameter in the running time, but also a solution with simple analysis and only a single
branching rule.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Feedback Vertex Set problem (FVS for short),
where we ask to delete as few vertices as possible from
a given undirected graph to make it acyclic, is one of the
fundamental graph problems, appearing on Karp’s list of
21 NP-hard problems [20]. It is also one of the most-
studied problems in parameterized complexity, and there
has been a long ‘race’ for the fastest FPT algorithm pa-
rameterized by the solution size, denoted by k [2,15,16,
23,19,14,18,7,6,1,12]. The fastest known deterministic algo-
rithm prior to this work, due to Cao et al. [6], runs in
O∗((1 + 2

√
2)k) ≤ O∗(3.83k) time1; if we allow random-

ization, the Cut&Count technique yields an O∗(3k) time
algorithm [12]. Related research investigates kernelization
complexity of FVS [5,4,25] and other variants, e.g., in di-
rected graphs [8,13,9].

In this work we claim the lead in the ‘FPT race’ for the
fastest deterministic algorithm for FVS.

* Corresponding author.
E-mail addresses: kociumaka@mimuw.edu.pl (T. Kociumaka),

malcin@mimuw.edu.pl (M. Pilipczuk).
1 The O∗-notation suppresses factors polynomial in the input size.

Theorem 1. Feedback Vertex Set, parameterized by the solu-
tion size k, can be solved in O∗((2 + φ)k) ≤ O∗(3.619k) time

and polynomial space where φ = 1+√
5

2 < 1.619 is the golden
ratio.

In our developments, we closely follow the approach
of the previously fastest algorithm due to Cao et al. [6].
That is, we first employ the iterative compression tech-
nique [24] in a standard manner to reduce the problem
to the disjoint compression variant (Disjoint-FVS), where
the vertex set is split into two parts, both inducing forests,
and we are allowed to delete vertices only from the second
part. Then we develop a set of reduction and branching
rules to cope with this structuralized instance. We rely
on the core observation of Cao et al. that the problem
becomes polynomial-time solvable once the maximum de-
gree of the deletable vertices drops to 3.

The main difference between our algorithm and the one
of Cao et al. is the introduction of a new reduction rule
that reduces deletable vertices with exactly one deletable
neighbour and two undeletable ones. Branching on such
vertices is the most costly operation in the O∗(5k) time
algorithm of Chen et al. [7] and avoiding such branching
leads to three branching rules, with associated case anal-
ysis, in the algorithm of Cao et al. [6]. As a consequence

http://dx.doi.org/10.1016/j.ipl.2014.05.001
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.05.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:kociumaka@mimuw.edu.pl
mailto:malcin@mimuw.edu.pl
http://dx.doi.org/10.1016/j.ipl.2014.05.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.05.001&domain=pdf


T. Kociumaka, M. Pilipczuk / Information Processing Letters 114 (2014) 556–560 557

of the new reduction rule, in our algorithm we only need
a single straightforward branching rule. Thus, the new rule
not only leads to a better time complexity, but also allows
us to simplify the algorithm and analysis.

We also present a new and shorter proof of the
main technical contribution of Cao et al., which says that
Disjoint-FVS is polynomial-time solvable if all deletable
vertices are of degree at most 3. Thus, apart from the bet-
ter time complexity of our algorithm, we also simplify the
arguments of Cao et al. [6].

1.1. Preliminaries and notation

All graphs in our work are undirected and, unless ex-
plicitly specified, simple. For a graph G , by V (G) and
E(G) we denote its vertex- and edge-set, respectively. For
v ∈ V (G), the neighbourhood of v , denoted NG(v), is de-
fined as NG(v) = {u ∈ V (G) : uv ∈ E(G)}. For a set X ⊆
V (G), we denote the subgraph induced by X by G[X],
and we use G \ X to denote G[V (G) \ X]. For X ⊆ V (G)

and v ∈ V (G) we define the X-degree of v , denoted by
degX (v), as |NG(v)∩ X |. Moreover, for v ∈ X we say that v
is X-isolated if degX (v) = 0, and an X-leaf if degX (v) = 1.

If e = uv is an edge in a (multi)graph G such that
u �= v , by contracting the edge e we mean the following op-
eration resulting in a multigraph G ′: we replace u and v
with a new vertex w , and define x′ = w for x ∈ {u, v} and
x′ = x for x ∈ V (G) \ {u, v}. For each edge xy ∈ E(G) \ {e},
we add an edge x′ y′ to E(G ′). In other words, we do not
suppress multiple edges and loops in the process of con-
traction. Moreover, there is a natural bijection between
E(G) \ {e} and E(G ′). We abuse the notation and iden-
tify these edges. Note that, if G is a simple graph and
NG(u) ∩ NG(v) = ∅, no loop nor multiple edge is intro-
duced when contracting uv .

We say that a set F ⊆ E(G) is acyclic, if it is the edge set
of a forest in G . For an acyclic set F ⊆ E(G) by contracting
F we mean a composition of subsequent contractions of
edges in F , in arbitrary order. This operation is valid for
every acyclic set F ⊆ E(G) and the resulting multigraph H
does not depend on the order of edge contractions.

Observation 2. Let F ⊆ E(G) be an acyclic in a multigraph G,
and let a multigraph H be obtained from G by contracting F .
Then any set F ′ ⊆ E(G) \ F is acyclic in H if and only if F ′ ∪ F
is acyclic in G.

2. The algorithm

2.1. Iterative compression

Following the approach of Cao et al. [6], we employ the
iterative compression technique [24] in a standard manner.
Consider the following variant of FVS.

Disjoint-FVS

Input: A graph G , a partition V (G) = U ∪ D such that
both G[U ] and G[D] are forests, and an integer k.
Question: Does there exist a set X ⊆ D of size at most
k such that G \ X is a forest?

A D-isolated vertex of degree 3 is called a tent. For a
Disjoint-FVS instance I = (G, U , D,k) we define the fol-
lowing functions: k(I) = k, �(I) is the number of connected
components of G[U ], t(I) is the number of tents in I , and
μ(I) = k(I) + �(I) − t(I) is the measure of I . Note that our
measure differs from the one used by Cao et al. For each
function we omit the argument if the instance is clear from
the context.

In the rest of the paper we focus on solving Disjoint-

FVS, and proving the following theorem.

Theorem 3. Disjoint-FVS on an instance I can be solved in
O∗(φmax(0,μ(I))) time and polynomial space.

For sake of completeness, we show how Theorem 3 im-
plies Theorem 1.

Proof of Theorem 1. Assume we are given an FVS instance
(G,k). Let v1, . . . , vn be an arbitrary ordering of V (G). De-
fine V i = {v1, v2, . . . , vi}, and Gi = G[V i]; we iteratively
solve FVS instances (Gi,k) for i = 1,2, . . . ,n. Clearly, if
(Gi,k) turns out to be a NO-instance for some i, (G,k) is a
NO-instance as well. On the other hand, (Gi,k) is a trivial
YES-instance for i ≤ k + 1.

To finish the proof we need to show how, given a so-
lution Xi−1 to (Gi−1,k), to solve the instance (Gi,k). Let
Z = Xi−1 ∪ {vi} and D = V i \ Z = V i−1 \ Xi−1. Clearly, G[D]
is a forest. We branch into 2|Z | ≤ 2k+1 subcases, guessing
the intersection of the solution to (Gi,k) with the set Z . In
a branch where we guess Y ⊆ Z , we delete Y from Gi and
disallow deleting vertices of Z \ Y . More formally, for any
Y ⊆ Z such that Gi[Z \ Y ] is a forest, we define U = Z \ Y
and apply the algorithm of Theorem 3 to the Disjoint-FVS

instance IY = (Gi \ Y , U , D,k − |Y |). Clearly, IY is a YES-
instance of Disjoint-FVS if and only if (Gi,k) has a solution
Xi with Xi ∩ Z = Y .

As for the running time, note that �(IY ) ≤ |U | =
|Z \ Y | ≤ (k + 1) − |Y |. Hence, μ(IY ) ≤ 2(k − |Y |) + 1 and
the total running time of solving (Gi,k) is bounded by

O∗
( ∑

Y ⊆Z

φ2(k−|Y |)+1
)

= O∗((1 + φ2)k) = O∗((2 + φ)k).
This completes the proof of Theorem 1. �
2.2. Reduction rules

Assume we are given a Disjoint-FVS instance I =
(G, U , D,k). We first state the following three reduction
rules, which in the current or slightly modified version
were used in previous algorithms for FVS [6,7]. At any
time, we apply the lowest-numbered applicable rule first.

Reduction Rule 1. Remove all vertices of degree at most 1
from G .

Reduction Rule 2. If a vertex v ∈ D has at least two neigh-
bours in the same connected component of G[U ], delete v
and decrease k by one.

Reduction Rule 3. If there exists a vertex v ∈ D of degree 2
in G , move it to U if it has a neighbour in U , or contract
one of its incident edges otherwise.



Download English Version:

https://daneshyari.com/en/article/428516

Download Persian Version:

https://daneshyari.com/article/428516

Daneshyari.com

https://daneshyari.com/en/article/428516
https://daneshyari.com/article/428516
https://daneshyari.com

