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This paper analyzes the ability of requirement metrics for software defect prediction.
Statistical significance tests are used to compare six machine learning algorithms on the
requirement metrics, design metrics, and combination of both metrics in our analysis.
The experimental results show the effectiveness of the predictor built on the combination
of the requirement and design metrics in the early phase of the software development
process.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Software defect prediction is to predict the defect-prone
modules for the next release of software or cross project
software [1–4]. Menzies et al. [5] compared the perfor-
mance of learning methods, and also endorsed the use
of static code attributes for predicting defect-prone mod-
ules. But later, they reported the “ceiling effect”, and held
the idea that further progress in learning defect predictors
might not come from better algorithms, but come from
more information content of the training data [6].

There were a lot of researches investigating the ability
of design metrics for defect prediction. Schroter et al. [7]
found that the software design and past failure history,
could be used to build predictor of fault-prone modules.
Jiang et al. [8] compared the performance of predictive
models based on design-level metrics with those based
on code-level metrics. They found that models built on
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the two level metrics outperformed those built on either
one metric group. Subramanyam and Krishnan [9] showed
that OO design complexity metrics were significantly as-
sociated with defects. Ohlsson and Alberg [10] carried out
an empirical study on Ericsson Telecom AB project, sug-
gested that design metrics can be used to predict the most
fault-prone modules. What is more, the design metrics,
which extracted from design phase artifacts, design dia-
grams such as flow graphs and UML diagrams, were used
at the NASA IV&V facility [11,12].

Recently, Boehm [13] described emergent requirement
as one of the five future software measurement challenges.
One of the earliest studies of the importance of the soft-
ware requirements was conducted by Bell and Thayer [14].
They reported, “software requirements are important, and
their problems are surprisingly similar across projects”. Re-
quirements that relate to a system’s quality attributes are
very useful to develop software with good quality. Require-
ment metrics also can be used to build predictor of fault-
prone modules, when they are represented quantitatively,
that is to say, they can be measured. Jiang et al. [15] built
defect prediction models based on requirements, prod-
uct/module code metrics, and both metrics. They suggested
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Table 1
Data description.

Data set Modules with design Modules with requirement

#total #defective modules #total #defective modules

cm1 505 81 114 58
pc1 1107 73 320 44

Table 2
Requirement and design metrics.

Requirement metrics Description or formula

ACTION Represents the number of actions the requirement needs to be capable of performing.
CONDITIONAL Represents whether the requirement will be addressing more than one condition.
CONTINUANCE Phrases such as the following: that follow an imperative and precede the definition of lower level requirement

specification.
IMPERATIVE Those words and phrases that command that something must be provided.
INCOMPLETE Phrases such as ‘TBD’ or ‘TBR’. They are used when a requirement has yet to be determined.
OPTION Those words that give the developer latitude in the implementation of the specification that contains them.
RISK_LEVEL A calculated risk level metric based on weighted averages from metrics collected for each requirement.
SOURCE Represents the number of sources the requirement will interface with or receive data from.
WEAK_PHRASE Clauses that are apt to cause uncertainty and leave room for multiple interpretations.

Design metrics Description or formula

EDGE_COUNT:e Those words and phrases that command that something must be provided.
NODE_COUNT:n Number of nodes found in a given module.
BRANCH_COUNT Branch count metrics.
CALL_PAIRS Number of calls to other functions in a module.
CONDITION_COUNT Number of conditionals in a given module.
v(G) The cyclomatic complexity of a module: v(G) = e − n + 2.
DECISION_COUNT Number of decision points in a given module.
DECISION_DENSITY Condition count/Decision count.
iv(G) The design complexity of a module.
DESIGN_DENSITY Design density is calculated as: iv(G)/v(G).
ev(G) The essential complexity of a module.
ESSENTIAL_DENSITY Essential density is calculated as: (ev(G) − 1)/(v(G) − 1).
MAINTENANCE_SEVERITY Maintenance severity is calculated as: ev(G)/v(G).
MODIFIED_CONDITION_COUNT The effect of a condition affect a decision outcome by varying that condition only.
MULTIPLE_CONDITION_COUNT Number of multiple conditions that exist within a module.
PATHOLOGICAL_COMPLEXITY A measure of the degree to which a module contains extremely unstructured constructs.

that the early life cycle metrics can play an important role
in fault prediction.

Different to prior works, we compare the performance
of defect predictors built from requirement metrics, de-
sign metrics, and the combination of the both using Naive
Bayes, AdaBoost, Bagging, Random Forest, Logistic regres-
sion, and K-Star methods. This empirical study shows that
the defect predictor built on combining metrics can be ap-
plied at the very early phrase in software development
process.

The rest of this paper is organized as follows. Section 2
describes software defect data sets. Sections 3 and 4 briefly
present the performance metrics and the experiment de-
sign in this study, respectively. Section 5 shows the exper-
imental result. Section 6 gives some discussion and threats
to validity. Section 7 finalizes the paper with conclusions
and future works.

2. Data set

The data we used for our experiments is obtained
from the NASA Metrics Data Program (MDP) data reposi-
tory [16], see Table 1 for an overview. We use the require-
ment metric data and design metric data in the repository
directly. Note that, although thirteen data sets with design-

level metrics are available in PROMISE repository, only two
defect data sets have requirement-level metrics. These data
sets have nine requirement metric attributes and sixteen
design metric attributes. Table 2 displays the detail metric
information.

3. Performance measures

To evaluate the performance of the prediction model,
we can use the confusion matrix [17] which has four types
of prediction as follows.

True positive (TP): the number of defective modules pre-
dicted as defective;

False negative (FN): the number of defective modules pre-
dicted as non-defective;

False positive (FP): the number of non-defective modules
predicted as defective;

True negative (TN): the number of non-defective modules
predicted as non-defective.

Since the performance metrics, F-measure and AUC are
commonly used in defect prediction, we use them to eval-
uate the defect predictors based on different algorithms.
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