
Information Processing Letters 114 (2014) 480–485

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On the primitivity of operators in SPARQL

Xiaowang Zhang ∗, Jan Van den Bussche

Hasselt University and Transnational University of Limburg, B-3500 Hasselt, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 November 2013
Received in revised form 25 February 2014
Accepted 26 March 2014
Available online 12 April 2014
Communicated by Jef Wijsen

Keywords:
Databases
RDF
SPARQL
Primitive operator
Expressive power

The paper studies the primitivity of the basic operators UNION, AND, OPTIONAL, FILTER,
and SELECT, as they are used in the SPARQL query language. The question of whether one
operator can be expressed in terms of the other operators is answered in detail. It turns
out that only AND is non-primitive. These results are shown to be insensitive to the choice
of semantics for filter conditions (three-valued or two-valued). It is also shown that these
two semantics can simulate each other.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Currently there is renewed interest in the classical topic
of graph databases [2,21,11]. Much of this interest has
been sparked by SPARQL: the query language for RDF. The
Resource Description Framework (RDF) [16] is a popular
data model for information on the Web. RDF represents
information in the form of directed, labeled graphs. The
standard query language for RDF data is SPARQL [20]. The
current version 1.1 of SPARQL extends SPARQL 1.0 [19] with
important features such as aggregation and regular ex-
pressions. Other features, such as negation and subqueries,
have also been added, but mainly for efficiency reasons, as
they were already expressible, in a more roundabout man-
ner, in version 1.0 (this follows from known results to the
effect that every relational algebra query is expressible in
SPARQL [1]). Hence, it is still relevant to study the funda-
mental properties of SPARQL 1.0.

The expressive power of SPARQL has been analyzed in
its relationship to the relational algebra [9], SQL [8], Dat-
alog [1,15], and OWL [18]. Also the relationship between

* Corresponding author.

expressivity and complexity and optimization of evaluation
has been studied [14,17,12].

The main goal of this paper is to understand the primi-
tivity of the basic operators used in SPARQL patterns: AND,
UNION, OPT, FILTER, and SELECT. (SELECT, which performs
projection, was added as a subquery feature in SPARQL 1.1.)
Indeed, primitivity has been a recurring topic in the inves-
tigation of database query languages, e.g., [3,7,10]. It turns
out that AND is not primitive: adapting an idea of Angles
and Gutierrez [1], we can express AND in terms of OPT and
FILTER. We show that this is the sharpest result possible,
in the sense that without FILTER, or without OPT, AND is
not expressible. We also show that AND can no longer be
expressed in terms of OPT and FILTER if one insists on a
“well-designed” expression [14]. We then proceed to show
that the remaining operators are primitive.

In a final section of the paper, we show that the above
results are insensitive to the choice of semantics for fil-
ter conditions. Indeed, while the official semantics uses a
three-valued logic [5], a two-valued semantics has been
considered as well [14]. Besides, we point out that the
choice of semantics has no impact on the expressivity: the
two semantics can express each other.

http://dx.doi.org/10.1016/j.ipl.2014.03.014
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.03.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://dx.doi.org/10.1016/j.ipl.2014.03.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.03.014&domain=pdf

X. Zhang, J. Van den Bussche / Information Processing Letters 114 (2014) 480–485 481

2. SPARQL

In this section we recall the syntax and semantics of
SPARQL patterns, closely following the core SPARQL for-
malization given by Pérez et al. [14] and Arenas et al. [5].

2.1. RDF graphs

Let I , B , and L be infinite sets of IRIs, blank nodes and
literals, respectively. These three sets are pairwise disjoint.
We denote the union I ∪ B ∪ L by U , and elements of I ∪ L
will be referred to as constants.

A triple (s, p,o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an
RDF triple. An RDF graph is a finite set of RDF triples.

2.2. Syntax of SPARQL patterns

Assume furthermore an infinite set V of variables, dis-
joint from U . The convention is to write variables starting
with the character “?”. SPARQL patterns are inductively de-
fined as follows.

• Any triple from (I ∪ L ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is a
pattern (called a triple pattern).

• If P1 and P2 are patterns, then so are the following:
P1 UNION P2, P1 AND P2, and P1 OPT P2.

• If P is a pattern and S is a finite set of variables then
SELECTS (P) is a pattern.

• If P is a pattern and C is a constraint (defined next),
then P FILTER C is a pattern; we call C the filter condi-
tion.
Here, a constraint is a boolean combination of atomic
constraints; an atomic constraint can have one of the
three following forms: bound(?x) (bound), ?x =?y
(equality), and ?x = c (constant equality), for ?x,?y ∈ V
and c ∈ I ∪ L.

2.3. Semantics of SPARQL patterns

The semantics of patterns is defined in terms of sets
of so-called mappings, which are simply total functions
μ: S → U on some finite set S of variables. We denote the
domain S of μ by dom(μ).

Now given a graph G and a pattern P , we define the se-
mantics of P on G , denoted by � P �G , as a set of mappings,
in the following manner.

• If P is a triple pattern (u, v, w), then

� P �G := {
μ: {u, v, w} ∩ V → U∣∣ (
μ(u),μ(v),μ(w)

) ∈ G
}
.

Here, for any mapping μ and any constant c ∈ I ∪ L,
we agree that μ(c) equals c itself. In other words,
mappings are extended to constants according to the
identity mapping.

• If P is of the form P1 UNION P2, then � P �G := � P1 �G ∪
� P2 �G .

• If P is of the form P1 AND P2, then � P �G := � P1 �G �
� P2 �G , where, for any two sets of mappings Ω1
and Ω2, we define

Ω1 � Ω = {μ1 ∪ μ2 | μ1 ∈ Ω1 and

μ2 ∈ Ω2 and μ1 ∼ μ2}.
Here, two mappings μ1 and μ2 are called compat-
ible, denoted by μ1 ∼ μ2, if they agree on the in-
tersection of their domains, i.e., if for every variable
?x ∈ dom(μ1) ∩ dom(μ2), we have μ1(?x) = μ2(?x).
Note that when μ1 and μ2 are compatible, their union
μ1 ∪ μ2 is a well-defined mapping; this property is
used in the formal definition above.

• If P is of the form P1 OPT P2, then

� P �G := (
� P1 �G � � P2 �G

) ∪ (
� P1 �G � � P2 �G

)
,

where, for any two sets of mappings Ω1 and Ω2, we
define

Ω1 �Ω2 = {μ1 ∈ Ω1 | ¬∃μ2 ∈ Ω2 : μ1 ∼ μ2}.
• If P is of the form SELECTS (P1), then � P �G =

{μ|S∩dom(mu) | μ ∈ � P1 �G}, where f |X denotes the
standard mathematical notion of restriction of a func-
tion f to a subset X of its domain.

• Finally, if P is of the form P1 FILTER C , then � P �G :=
{μ ∈ � P1 �G | μ(C) = true}.
Here, for any mapping μ and constraint C , the evalua-
tion of C on μ, denoted by μ(C), is defined in terms of
a three-valued logic with truth values true, false, and
error. Recall that C is a boolean combination of atomic
constraints.
For a bound constraint bound(?x), we define:

μ
(
bound(?x)

) =
{

true if ?x ∈ dom(μ);
false otherwise.

For an equality constraint ?x =?y, we define:

μ(?x =?y)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

true
if ?x,?y ∈ dom(μ) and μ(?x) = μ(?y);

false
if ?x,?y ∈ dom(μ) and μ(?x) 	= μ(?y);

error
otherwise.

Thus, when ?x and ?y do not both belong to dom(μ),
the equality constraint evaluates to error. Similarly, for
a constant-equality constraint ?x = c, we define:

μ(?x = c) =
{

true if ?x ∈ dom(μ) and μ(?x) = c;
false if ?x ∈ dom(μ) and μ(?x) 	= c;
error otherwise.

A boolean combination is then evaluated using the
truth tables given in Table 1.

3. Primitivity of operators

Let us abbreviate the operator AND by A; FILTER by F ;
OPT by O; SELECT by S; and UNION by U . Then we can
denote any fragment of SPARQL, where only a subset of
the five operators is available, by the letter word formed
by the operators that are available in the fragment. Thus,

Download English Version:

https://daneshyari.com/en/article/428527

Download Persian Version:

https://daneshyari.com/article/428527

Daneshyari.com

https://daneshyari.com/en/article/428527
https://daneshyari.com/article/428527
https://daneshyari.com

