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We show that there are �0
3-complete languages of infinite words accepted by non-

deterministic Petri nets with Büchi acceptance condition, or equivalently by Büchi blind
counter automata. This shows that ω-languages accepted by non-deterministic Petri nets
are topologically more complex than those accepted by deterministic Petri nets.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The languages of infinite words, also called ω-lan-
guages, accepted by finite automata were first studied by
Büchi to prove the decidability of the monadic second or-
der theory of one successor over the integers. Since then
regular ω-languages have been much studied and used for
specification and verification of non-terminating systems,
see [21,20,15] for many results and references. The ac-
ceptance of infinite words by other finite machines, like
pushdown automata, counter automata, Petri nets, Turing
machines, . . . , with various acceptance conditions, has also
been considered, see [20,5,2,9].

Since the set Σω of infinite words over a finite alphabet
Σ is naturally equipped with the Cantor topology, a way
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to study the complexity of languages of infinite words
accepted by finite machines is to study their topological
complexity and firstly to locate them with regard to the
Borel and the projective hierarchies [21,19,5,13,20,18,17].

Every ω-language accepted by a deterministic Büchi au-
tomaton is a �0

2-set. On the other hand it follows from
Mac Naughton’s Theorem that an ω-language accepted by
a non-deterministic Büchi (or Muller) automaton is also ac-
cepted by a deterministic Muller automaton, and thus is
a boolean combination of ω-languages accepted by deter-
ministic Büchi automata. Therefore every ω-language ac-
cepted by a non-deterministic Büchi (or Muller) automaton
is a �0

3-set. In a similar way, every ω-language accepted by
a deterministic Muller Turing machine, and thus also by
any Muller deterministic finite machine is a �0

3-set, [5,20].
We consider here acceptance of infinite words by Petri

nets or equivalently by (partially) blind counter automata.
Petri nets are used for the description of distributed sys-
tems [6,16,11], and they may be defined as partially blind
multicounter automata, as explained in [22,5,10]. In or-
der to get a partially blind multicounter automaton which
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accepts the same language as a given Petri net, one can
distinguish between the places of a Petri net by dividing
them into the bounded ones (the number of tokens in such
a place at any time is uniformly bounded) and the un-
bounded ones. Then each unbounded place may be seen
as a partially blind counter, and the tokens in the bounded
places determine the state of the partially blind multi-
counter automaton. The transitions of the Petri net may
then be seen as the finite control of the partially blind
multicounter automaton and the labels of these transitions
are then the input symbols.

The infinite behavior of Petri nets was first studied by
Valk [22] and by Carstensen in the case of deterministic
Petri nets [1].

On one side the topological complexity of ω-languages
of deterministic Petri nets is completely determined. They
are �0

3-sets and their Wadge hierarchy, which is a great
refinement of the Borel hierarchy, defined via reductions
by continuous functions, has been determined in [7,3,4];
its length is the ordinal ωω2

.
On the other side, nothing was known about the topo-

logical complexity of ω-languages of non-deterministic
Petri nets. We show that there exist �0

3-complete, hence
non-�0

3, ω-languages accepted by one-blind-counter Büchi
automata. Notice that it was proved in [8] that ω-languages
accepted by (non-blind) one-counter Büchi automata have
the same topological complexity as ω-languages of Turing
machines, but the non-blindness of the counter was essen-
tial in the proof since the ability to use the zero-test of the
counter was important.

This provides the first result on the topological com-
plexity of ω-languages of non-deterministic Petri nets and
shows that there exist some ω-languages accepted by non-
deterministic Petri nets, and even by one-blind-counter
Büchi automata, which are topologically more complex
than those accepted by deterministic Petri nets.

2. Basic notions

We assume the reader to be familiar with the theory of
formal (ω)-languages, see [21,20].

When Σ is a countable alphabet, a non-empty finite word
over Σ is any sequence x = a1 . . .ak , where ai ∈ Σ for i =
1, . . . ,k, and k is an integer � 1. Σ� is the set of finite words
(including the empty word ε) over Σ.

The first infinite ordinal is ω. An ω-word over Σ is
an ω-sequence a1 . . .an . . . , where for all integers i � 1,
ai ∈ Σ. When σ is an ω-word over Σ, we write σ =
σ(1)σ (2) . . . σ (n) . . . , where for all i, σ(i) ∈ Σ, and σ [n] =
σ(1)σ (2) . . . σ (n).

The concatenation product of two finite words u and
v is denoted u · v and sometimes just uv . This product
is extended to the product of a finite word u and an
ω-word v: the infinite word u · v is then the ω-word such
that: (u · v)(k) = u(k) if k � |u|, and (u · v)(k) = v(k − |u|)
if k > |u|.

The set of ω-words over the alphabet Σ is denoted
by Σω . An ω-language over an alphabet Σ is a subset of Σω .

A blind multicounter automaton is a finite automaton
equipped with a finite number (k) of blind (sometimes
called partially blind, as in [10]) counters. The content of

any such counter is a non-negative integer. A counter is
said to be blind when the multicounter automaton can-
not test whether the content of the counter is zero. This
means that if a transition of the machine is enabled when
the content of a counter is zero then the same transition
is also enabled when the content of the same counter is a
non-zero integer.

We now give the definition of a Büchi 1-blind-counter
automaton. Notice that we consider here only real time au-
tomata, i.e., without ε-transitions.

Definition 2.1. A (real time) Büchi 1-blind-counter automa-
ton is a 5-tuple A = (Q ,Σ,�,q0, F ), where Q is a fi-
nite set of states, Σ is a finite input alphabet, q0 ∈ Q is
the initial state, the transition relation � is a subset of
Q × Σ × {0,1} × Q × {0,1,−1}, and F ⊆ Q is the set of
accepting states.

If the automaton A is in state q, and c ∈ N is the con-
tent of the counter C , then the configuration (or global
state) of A is the pair (q, c).

Given any a ∈ Σ, any q,q′ ∈ Q , and any c ∈ N, if both
�(q,a, i,q′, j), and (c � 1 ⇒ i = 1) and (c = 0 ⇒ (i = 0 and
j ∈ {0,1})) hold, then we write: a : (q, c) �→A (q′, c + j).

Moreover the counter of A is blind, i.e., if �(q,a, i,q′, j)
holds, and i = 0 then �(q,a, i′,q′, j) holds also for i′ = 1.

Let x = a1a2 . . .an . . . be an ω-word over Σ. An ω-seq-
uence of configurations ρ = (qi, ci)i�1 is called a run of A
on x if and only if

• (q1, c1) = (q0,0), and
• ai : (qi, ci) �→A (qi+1, ci+1) (for all 1 � i).

We denote In(ρ) the set of all the states visited in-
finitely often during the run ρ . The automaton A ac-
cepts x if there is an infinite run ρ of A on x such that
In(ρ) ∩ F 
= ∅.

The ω-language accepted by A is the set L(A) of
ω-words accepted by A.

We assume the reader to be familiar with basic notions
of topology which may be found in [14,13,12,20,15]. If X is
a countable alphabet containing at least two letters, then
the set Xω of infinite words over X may be equipped with
the product topology of the discrete topology on X . This
topology is induced by a natural metric which is called the
prefix metric and defined as follows. For u, v ∈ Xω and u 
=
v let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer
n such that the (n + 1)st letter of u is different from the
(n + 1)st letter of v .

If X is finite then Xω is a Cantor space and if X is
countably infinite then Xω is homeomorphic to the Baire
space ωω . The open sets of Xω are the sets in the form
W · Xω , where W ⊆ X� .

The classes �0
n and �0

n of the Borel Hierarchy on the
topological space Xω are defined as follows: �0

1 is the
class of open sets of Xω , �0

1 is the class of closed sets
(i.e. complements of open ones) of Xω . And for any integer
n � 1: �0

n+1 is the class of countable unions of �0
n-subsets

of Xω , and �0
n+1 is the class of countable intersections

of �0
n-subsets of Xω . The Borel Hierarchy is also defined



Download English Version:

https://daneshyari.com/en/article/428534

Download Persian Version:

https://daneshyari.com/article/428534

Daneshyari.com

https://daneshyari.com/en/article/428534
https://daneshyari.com/article/428534
https://daneshyari.com

