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In this paper we consider k-server problems with parallel requests where several servers
can also be located on one point. We will distinguish the surplus-situation where the
request can be completely fulfilled by means of the k servers and the scarcity-situation
where the request cannot be completely met. We use the method of the potential function
by Bartal and Grove [2] in order to prove that a corresponding Harmonic algorithm is
competitive for the more general k-server problem in the case of unit distances. For this
purpose we partition the set of points in relation to the online and offline servers’ positions
and then use detailed considerations related to sets of certain partitions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper a generalized k-server problem with par-
allel requests where several servers can also be located
on one point is discussed. The investigation of the gen-
eralized k-server problem was initiated by an operations
research problem which consists of optimal conversions
of machines or moulds (see [4], [5] or [7]). It is sensible
in the case of parallel requests to distinguish the surplus-
situation where the request can be completely fulfilled by
means of the k servers and the scarcity-situation where
the request cannot be completely met.

The k-server problem was introduced by Manasse,
McGeoch and Sleator [9]. Meanwhile it is the most stud-
ied problem in the area of competitive online problems.
Historical notes on k-server problems can be found in the
book by A. Borodin and R. El-Yaniv [3] (Sections 10.9 and
11.7)1 or also in the paper by Y. Bartal and E. Grove [2].
There the two important results are the competitiveness
of the deterministic work-function algorithm (see E. Kout-
soupias and C. Papadimitriou [8]) and of the randomized
Harmonic k-server algorithm against an adaptive online
adversary (see Y. Bartal and E. Grove [2]).

1 For basic knowledge of (usual) k-server problems see also [3], Chap-
ters 10 and 11.

The work-function algorithm is an inefficient algorithm
(with a good competitive ratio). In contrast the Harmonic
k-server algorithm is memoryless and time-efficient. For
this reason we first want to focus on a corresponding
Harmonic k-server algorithm for the generalized k-server
problem.

If one tries to generalize the proof by Y. Bartal and
E. Grove [2] several sub-chains with different lengths must
be considered and one will see that the computation of
the weights f ( j) is not possible. In this paper we consider
the generalized k-server problem in the case of unit dis-
tances. The (usual) k-server problem with unit distances is
known as the paging problem and the Harmonic k-server
algorithm as RAND algorithm (see [3], Chapters 3 and 4;
see also [11]). Raghavan and Snir [10] have shown that the
RAND algorithm is k-competitive against an adaptive on-
line adversary. Although a lot more feasible requests can
occur in the case of the generalized k-server problem we
will show that the corresponding Harmonic k-server algo-
rithm is max{k, R(k) − k + 1}-competitive (where R(k) is a
bound of the requests related to the scarcity-situation, see
Theorem 1) and k-competitive (just as RAND), if only the
surplus-situation is allowed.

Parallel requests imply that the proof is more difficult
as in the case of the RAND algorithm. We will apply a po-
tential function in the proof and then partition the set of
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points in relation to the online and offline servers’ posi-
tions. Finally detailed considerations related to sets of cer-
tain partitions will be used.

2. The formulation of the model

Let k � 1 be an integer, and M = (M,d) be a finite
metric space where M is a set of points with |M| = N .
An algorithm controls k mobile servers, which are lo-
cated on points of M . Several servers can be located on
one point. The algorithm is presented with a sequence
σ = r1, r2, . . . , rn of requests where a request r is de-
fined as an N-ary vector of integers with ri ∈ {0,1, . . . ,k}
(“parallel requests”). The request means that ri server is
needed on point i (i = 1,2, . . . , N). We say a request r is

served if
{

at least
at most

}
ri servers lie on i (i = 1,2, . . . , N) in

case
{

C[r,k]
C[k,r]

}
. C[r,k] denotes the case

∑N
i=1 ri � k (surplus-

situation, the request can be completely fulfilled) and
C[k, r] denotes the case

∑N
i=1 ri � k (scarcity-situation, the

request cannot be completely met, however it should be
met as much as possible). By moving servers, the algorithm
must serve the requests r1, r2, . . . , rn sequentially. For any
request sequence σ and any generalized k-server algorithm
ALGp(arallel) , ALGp(σ ) is defined as the total distance (mea-
sured by the metric d) moved by the ALGp ’s servers in
servicing σ .

In this paper we will show that the corresponding Har-
monic k-server algorithm attains a competitive ratio of
max{k, R(k) − k + 1} (see Theorem 1) against an adaptive
online adversary in the case of unit distances (for the def-
initions of competitive ratio and adaptive online adversary
see [2] or [3], Sections 4.1 and 7.1). Analogous to [3], p.
152, working with lazy algorithms ALGp is sufficient. For
that reason we define the set of feasible servers’ positions
with respect to s and r in the following way

ÂN;k(s, r)

=
{

s′ ∈ P N (k)

∣∣∣∣ ri � s′
i � max{si, ri}, i = 1, . . . , N, in C[r,k]

min{si, ri}� s′
i � ri, i = 1, . . . , N, in C[k, r]

}

(1)

where

P N(k) :=
{

s ∈ Z
n+
∣∣∣ N∑

i=1

si = k

}
. (2)

The metric d implies that (P N(k), d̂) is also a finite met-
ric space where d̂ are the optimal values of the classical
transportation problems with availabilities s and require-
ments s′ of P N(k):

∑N
i=1
∑N

j=N d(i, j)xij → min subject to∑N
j=1 xij = si ∀i,

∑N
i=1 xij = s′

j ∀ j, x ∈ Z
n+ × Z

n+ (see [6],
Lemma 3.6).

The corresponding HARMONICp k-server algorithm op-
erates as follows: Serve a (not completely covered) request
r with randomly chosen servers so that for the (new)
servers’ positions s′ ∈ ÂN;k(s, r) is valid with respect to the
previous servers’ positions s and the request r. More pre-
cisely, HARMONICp leads to s′ ∈ ÂN;k(s, r) with probability

1
d̂(s,s′)∑

s′′: s′′∈ ÂN;k(s,r)
1

d̂(s,s′′)

. (3)

3. The competitiveness of HARMONIC p in case of unit
distances

Unit distances mean that d(i, j) = 1 ∀i �= j. Thus,
d̂(s, s′) =∑N

i=1
1
2 |si − s′

i | for s, s′ ∈ P N(k) follows and (1)
yields

d̂(s, s′) =
{∑

i:rt
i >si

(rt
i − si) in C[r,k]∑

i:rt
i <si

(si − rt
i ) in C[k, r]

for every s′ ∈ ÂN;k(s, r). Then s′ ∈ ÂN;k(s, r) is chosen ran-
domly and uniformly with probability 1

| ÂN;k(s,r)| among all

elements of ÂN;k(s, r) by HARMONICp .
Next we give an example that an additional assumption

(as
∑

i∈M rt
i � R(k) in the following theorem) in the case

C[k, rt ] is necessary in order to prove the competitiveness.
Let k = 1 and

∑
i∈M rt

i not bounded in the case C[k, rt ].
The adversary moves his server to another point if and

only if the servers of the adversary and of the algorithm
are located on the same point.

The adversary produces the request sequence with rt =
(1, . . . ,1,0,1, . . . ,1) in step t where rt

i0
= 0 for this point

i0 on which the server of the algorithm is located. Then
the cost of the algorithm is equal to 1 in every step.

The HARMONICp algorithm moves its server to a point
i �= i0 with the probability 1

N−1 . This also means that then
the servers of the adversary and of the algorithm are lo-
cated on the same point with the probability 1

N−1 .
Hence

E
[
cost(HARMONICp algorithm)

]
= (N − 1)E

[
cost(adversary)

]
follows in relation to the expected costs and no C(k) (in-
dependent of N) exists such that the HARMONICp k-server
algorithm is C(k)-competitive.

Theorem 1. The HARMONICp k-server algorithm attains a com-
petitive ratio of C(k) = max{k, R(k) − k + 1} against an adap-
tive online adversary in case of unit distances if

∑
i∈M rt

i �
R(k) ∀t for given R(k) > k.2

Proof. We will use a potential function (see [2]) to prove
the statement. As described in [2], the potential function is
a function of the current locations of the online and offline
servers. Intuitively, Φ is an upper bound on the expected
amount of work the algorithm can be forced to do if the
offline servers do not move. In case of unit distances it is
sufficient to use the following simple potential function

2 This condition is important for case C[k, rt ]. (According to the intro-
duced model

∑
i∈M rt

i � k is true in case C[rt ,k].) See also the above
mentioned example.
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