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Impossible differential cryptanalysis is one of the conventional methods in the field of
cryptanalysis of block ciphers. In this paper, a general model of an impossible differential
attack is introduced. Then, according to this model, the concept of an ideal impossible
differential attack is defined and it is proven that the time complexity of an ideal attack
only depends on the number of involved round key bits in the attack.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Impossible differential cryptanalysis, an extension of
the differential attack [1], was first introduced by Knudsen
and Biham to analyze DEAL [2] and Skipjack [3], respec-
tively. This cryptanalysis method have achieved significant
results on many well-known block ciphers including the
attacks on AES-128 [4–6], Camellia [7–10], ARIA [7,11] and
MISTY-1 [12–14].

As it is known, the time complexity of an impossible
differential attack is determined based on the attack pro-
cedure. According to the published instances of this crypt-
analysis method, it seems that the time complexity can
be reduced by a variants of different techniques, includ-
ing early abort technique, hash tables and key scheduling
considerations. This paper discusses the minimal computa-
tional complexity of an impossible differential attack and
introduce an expression for the minimum possible time
complexity which only depends on the number of round
key bits involved in the attack.
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The block cipher E which is considered in this paper
is an iterative symmetric block cipher that consists of sev-
eral sequential rounds. Each round of E contains one Add-
Round-Key operation which is assumed to be a modulo 2
addition (bitwise XOR), and a PS-box including some non-
linear substitutions and linear permutations. Thus a round
function maps an input x to PS(x ⊕ k) under a round
key k. This representation covers all types of block cipher
structures with bit-wise XOR key addition, whether they
are Feistel ciphers such as Camellia [15], or Substitution–
Permutation Networks (SPN) such as AES [16], or even
block ciphers of other structures such as FOX [17]. The
block cipher E encrypts a plaintext under a secret key K
to obtain its corresponding ciphertext. Each round key is
determined as a (direct or recursive) function of the secret
key.

The paper is organized as follows. In Section 2 the gen-
eral form of an impossible differential attack is introduced.
Then, the concept of an ideal attack and a tight approxi-
mation of the attack’s time complexity is discussed in Sec-
tion 3. Finally, the paper is concluded with two examples
on AES and Camellia in Section 4.
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Fig. 1. General structure of an impossible differential attack.

2. A general model for impossible differential attack

As it is indicated in Fig. 1, block cipher E is divided
into three sub-ciphers E1, E2 and E3, in an impossible dif-
ferential attack. There is an impossible differential for the
sub-cipher E2 which is defined by two sets of differences
in its input and output, called � and ∇ . Each difference
d ∈ � is in contradiction with every difference in ∇ . In
other words, for any arbitrary secret key K , it is impos-
sible to have a pair (x1, x2) and its corresponding pair
(y1, y2) (yi = E2(xi, K )) such that x1 ⊕ x2 = d ∈ � and
y1 ⊕ y2 = d′ ∈ ∇ .

In sub-cipher E1 we define a sequence of sets of differ-
ences including an input difference D0 and differences D1
to Da in the outputs of rounds of E1 (Note that Da ⊆ �).
For a pair (x1, x2) which x1 ⊕ x2 ∈ Di−1, after one-round
encryption under an arbitrary round-key value ki , its cor-
responding output pair (y1, y2) will have a difference
y1 ⊕ y2 ∈ Di with probability pi . Thus, probabilities pi ,
1 � i � a, are the difference transition probabilities in the
encryption path. In the same way, for sub-cipher E3, we
define a sequence of sets of differences D ′

0 to D ′
b (D ′

b ⊆ ∇)

and the difference transition probabilities p′
j , 1 � j � b, in

the decryption path.
By concatenating the whole round keys in sub-ciphers

E1 and E3 we define sub-cipher keys K E1 = k1|k2| · · · |ka

and K E3 = k′
1|k′

2| · · · |k′
b , respectively. However, in the pro-

cedure of an impossible differential attack, we need only
those bits of K E1 and K E3 which are required to check
whether the intermediate differences meet the expected
differences D0, . . . , Da, D ′

0, . . . , D ′
b or not. Also, according

to the key schedule of E , sometimes we are able to deter-
mine the values of some required key bits of a round key ki
as a function of the required key bits that have already been
guessed. Such bits are redundant key bits. Those bits of ki
which are required and also are not redundant are called
involved key bits and are indicated by kl

i . Involved key bits of
sub-ciphers E1 and E3 are indicated by K l

E1
= kl

1|kl
2| · · · |kl

a

and K l
E3

= k′l
1|k′l

2| · · · |k′l
b . The goal of the attack is to dis-

cover the correct value of the whole of involved key bits
K l = K l

E1
|K l

E3
.

2.1. General attack procedure

We call a pair of plaintexts (P0, P1), P0 ⊕ P1 ∈ D0,
a proper pair if their corresponding ciphertext difference
C0 ⊕ C1 meets D ′

0. Assume that K l consists of L bits
(L = |K l|). If we initialize a list of all 2L possible val-
ues of K l , then for each proper pair, those values of K l

which satisfy all of the a + b intermediate differences are
certainly incorrect and must be eliminated from the list.
If there are enough proper pairs, which is assumed to
be 2N pairs, then this process lasts until only 2ε candi-
dates remain in the list. The correct value of K l is certainly
one of the remaining candidates. However, bits of K l are
guessed in a pre-defined order. Due to the order of the bits
of K l , the attack procedure can be performed step by step,
where each step corresponds to some bits of one kl

i (k′l
j )

which value can be guessed independent of the other bits
of kl

i (k′l
j ). Thus, K l is divided among the steps and for t-th

step of the attack, 1 � t � T , the corresponding bits of K l

are indicated by λt . Also, αt is the difference transition
probability of step t . As it will be explained in the follow-
ing, each step of the attack can be done using encryptions
or memory accesses based on pre-computed tables.

Encryption based procedure In the first step of the attack
we perform Z1 = 2|λ1| (partial) encryptions to obtain S1 =
α1 × 2|λ1| values for λ1. Suppose in step t − 1, t � 2, we
obtain St−1 values of λ1|λ2| · · · |λt−1 which satisfy all of
the corresponding intermediate differences until the cur-
rent step. Then, in t-th step of the attack we perform Zt =
St−1 × 2|λt | encryptions to obtain St = St−1 × (αt × 2|λt |)
values of λ1|λ2| · · · |λt−1|λt which also satisfy the interme-
diate difference associated with the t-th step of the attack.

Suppose,
∏T

t=1 αt = ∏a
i=1 pi × ∏b

j=1 p′
j is denoted

by 2Q . Also, as it is expected we have
∑T

t=1 |λt | =
∑a

i=1 |kl
i | +

∑b
j=1 |k′l

j | = L. Thus, in the last step of the at-

tack, for each proper pair, we perform ZT = ST −1 × 2|λT | =
2|λT | ×∏T −1

t=1 αt × 2|λt | = (1/αT )× 2Q +L encryptions to ob-
tain ST = ZT × αT = 2Q +L values of K l which must be
eliminated from the list. The time complexity is dominated
by the step m with the largest Zm .

Pre-computation based procedure Each step of the attack
can be done by pre-computation. For this purpose, in an
offline stage, corresponding to step t of the attack, by de-
cryption (encryption) of possible pairs in the output (in-
put) of PS-box (according to the output difference), those
pairs which differences satisfy the input (output) differ-
ence are obtained and stored in a row of a hash table
indexed by the input differences. So, as it is expected, in
each row of such a hash table, about αt × 2|λt | pairs are
stored. As a result, in the online stage of the attack, step t
is done by St memory accesses (for each proper pair) to
obtain St values of λ1|λ2| · · · |λt−1|λt . Thus, the time com-
plexity of the last step is reduced to ST = 2Q +L memory
accesses. It must be noted that there is no guarantee for
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