
Information Processing Letters 114 (2014) 264–267

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Fast monotone summation over disjoint sets ✩

Petteri Kaski a, Mikko Koivisto b, Janne H. Korhonen b,∗, Igor S. Sergeev c

a Helsinki Institute for Information Technology HIIT & Department of Information and Computer Science, Aalto University, PO Box 15400,
FI-00076 Aalto, Finland
b Helsinki Institute for Information Technology HIIT & Department of Computer Science, University of Helsinki, PO Box 68, FI-00014 Helsinki,
Finland
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Department of Discrete Mathematics, Leninskie Gory,
Moscow 119991, Russia

a r t i c l e i n f o

Article history:
Received 8 March 2013
Accepted 6 December 2013
Available online 10 December 2013
Communicated by J. Torán

Keywords:
Algorithms
Arithmetic complexity
Commutative semigroup
Disjoint summation
k-Path
Matrix permanent

1. Introduction

Let (S,+) be a commutative semigroup and let [n] =
{1,2, . . . ,n}. For integers 0 � p,q � n, the (n, p,q)-disjoint
summation problem is as follows. Given a value f (X) ∈ S
for each set X ⊆ [n] of size at most p, the task is to output
the function e, defined for each set Y ⊆ [n] of size at most
q by

e(Y) =
∑

X∩Y =∅
f (X), (1)

where X ⊆ [n] ranges over sets of size at most p that are
disjoint from Y .

✩ This paper is an extended version of a conference abstract by a subset
of the present authors [10].

* Corresponding author.
E-mail addresses: petteri.kaski@aalto.fi (P. Kaski),

mikko.koivisto@cs.helsinki.fi (M. Koivisto), janne.h.korhonen@cs.helsinki.fi
(J.H. Korhonen), isserg@gmail.com (I.S. Sergeev).

We study the arithmetic complexity [6] of (n, p,q)-dis-
joint summation, with the objective of quantifying how
many binary additions in S are sufficient to evaluate (1)
for all Y . As additive inverses need not exist in S , this is
equivalent to the monotone arithmetic circuit complexity,
or equivalently, the monotone arithmetic straight-line pro-
gram complexity of (n, p,q)-disjoint summation.

Our main result is the following. Let Cn,p,q denote the
minimum number of binary additions in S sufficient to
compute (n, p,q)-disjoint summation, and let us write

(n
↓k

)
for the sum

(n
0

) + (n
1

) + · · · + (n
k

)
of binomial coefficients.

Theorem 1. Cn,p,q �
[

p
(n
↓p

) + q
(n
↓q

)] · min{2p,2q}.

This improves upon a preliminary result by a subset of
the present authors [10].

2. Related work and applications

Circuit complexity. If we ignore the empty set, the spe-
cial case of (n,1,1)-disjoint summation corresponds to

0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.12.003

http://dx.doi.org/10.1016/j.ipl.2013.12.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:petteri.kaski@aalto.fi
mailto:mikko.koivisto@cs.helsinki.fi
mailto:janne.h.korhonen@cs.helsinki.fi
mailto:isserg@gmail.com
http://dx.doi.org/10.1016/j.ipl.2013.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2013.12.003&domain=pdf

P. Kaski et al. / Information Processing Letters 114 (2014) 264–267 265

the matrix–vector multiplication task x �→ Ī x, where Ī is
the complement of the identity matrix, that is, a matrix
with zeroes on diagonal and ones elsewhere. Results
from Boolean circuit complexity concerning this particu-
lar task can be transferred to our setting, implying that
(n,1,1)-disjoint summation has complexity exactly 3n − 6
[7,14].

For the special case of (n,n,n)-disjoint summation,
Yates [18] gave an algorithm evaluating (1) for all Y ⊆ [n]
using 2n−1n additions in S; Knuth [12, §4.6.4] presents
a modern exposition. Furthermore, this bound is tight in
the monotone setting [11]. Yates’s algorithm has been
used as a component in 2nnO (1) time algorithms for graph
k-colouring and related covering and packing problems [3].

In a setting where S is a group and we are al-
lowed to take additive inverses in S , it is known that
the (n, p,q)-disjoint summation can be evaluated with
O

(
p
(n
↓p

) + q
(n
↓q

))
operations in S via the principle of

inclusion and exclusion. This has been employed to ob-
tain improved counting algorithms for hard combinatorial
problems, most prominently the

(n
k/2

)
nO (1) algorithm for

counting k-paths in a graph by Björklund et al. [4].

Maximisation. An immediate template for applications of
(n, p,q)-disjoint summation is maximisation under con-
straints. If we choose the semigroup to be (Z ∪ {−∞,∞},
max), then (1) becomes

e(Y) = max
X∩Y =∅

f (X).

This can be seen as precomputing the optimal p-subset X
when the elements in a q-subset Y are “forbidden”, in a
setting where the set Y is either not known beforehand or
Y will eventually go through almost all possible choices.
Such scenario takes place e.g. in a recent work [8] on
Bayesian network structure learning by branch and bound.

Semirings. Other applications of disjoint summation are en-
abled by extending the semigroup by a multiplication op-
eration that distributes over addition. That is, we work
over a semiring (S,+, ·), and the task is to evaluate the
sum
∑

X∩Y =∅
f (X) · g(Y), (2)

where X and Y range over all disjoint pairs of subsets of
[n], of size at most p and q, respectively, and f and g are
given mappings to S . We observe that the sum (2) equals∑

Y e(Y) · g(Y), where Y ranges over all subsets of [n] of
size at most q and e is as in (1). Thus, an efficient way to
compute e results in an efficient way to evaluate (2).

Counting k-paths. An application of the semiring setup is
counting the maximum-weight k-edge paths from vertex s
to vertex t in a given graph with real edge weights. Here
we assume that we are only allowed to add and com-
pare real numbers and these operations take constant time
(cf. [16]). By straightforward Bellman–Held–Karp type dy-
namic programming [1,2,9] we can solve the problem in(n

k

)
nO (1) time. Our main result gives an improved algo-

rithm that runs in time 2k/2
(n

k/2

)
nO (1) for even k. The key

idea is to solve the problem in halves. We guess a mid-
dle vertex v and define w1(X) as the maximum weight
of a k/2-edge path from s to v in the graph induced
by the vertex set X ∪ {v}; we similarly define w2(X) for
the k/2-edge paths from v to t . Furthermore, we define
c1(X) and c2(X) as the respective numbers of paths of
weight w1(X) and w2(X) and put f (X) = (c1(X), w1(X))

and g(X) = (c2(X), w2(X)). These values can be computed
for all vertex subsets X of size k/2 in

(n
k/2

)
nO (1) time.

Now the expression (2) equals the number of k-edge paths
from s to t with middle vertex v , when we define the
semiring operations � and � in the following manner:
(c, w)� (c′, w ′) = (c · c′, w + w ′) and

(c, w)�
(
c′, w ′) =

⎧⎨
⎩

(c, w) if w > w ′,
(c′, w ′) if w < w ′,
(c + c′, w) if w = w ′.

For the more general problem of counting weighted
subgraphs Vassilevska and Williams [15] give an algo-
rithm whose running time, when applied to k-paths, is
O (nωk/3) + n2k/3+O (1) , where 2 � ω < 2.3727 is the expo-
nent of matrix multiplication [17].

Computing matrix permanent. A further application is the
computation of the permanent of a k × n matrix (aij)

over a noncommutative semiring, with k � n an even in-
teger, given by

∑
σ a1σ(1)a2σ(2) · · ·akσ(k) , where the sum

is over all injective mappings σ from [k] to [n]. We ob-
serve that the expression (2) equals the permanent if
we let p = q = k/2 = � and define f (X) as the sum of
a1σ(1)a2σ(2) · · ·a�σ (�) over all injective mappings σ from
{1,2, . . . , �} to X and, similarly, g(Y) as the sum of
a�+1σ(�+1)a�+2σ(�+2) · · ·akσ(k) over all injective mappings
σ from {� + 1, � + 2, . . . ,k} to Y . Since the values f (X)

and g(Y) for all relevant X and Y can be computed by dy-
namic programming with O

(
k
(n
↓k/2

))
operations in S , our

main result yields an upper bound of O
(
2k/2k

(n
↓k/2

))
oper-

ations in S for computing the permanent.
Thus we improve significantly upon a Bellman–Held–

Karp type dynamic programming algorithm that computes
the permanent with O

(
k
(n
↓k

))
operations in S , the best

previous upper bound we are aware of for noncommuta-
tive semirings [5]. It should be noted, however, that algo-
rithms using O

(
k
(n
↓k/2

))
operations in S are already known

for noncommutative rings [5], and that faster algorithms
using O (k(n−k+1)2k) operations in S are known for com-
mutative semirings [5,13].

3. Evaluation of disjoint sums

Overview. In this section, we prove Theorem 1 by giving an
inductive construction for the evaluation of (n, p,q)-dis-
joint summation. That is, we reduce (n, p,q)-disjoint sum-
mation into one (n − 1, p,q)-disjoint summation and two
(n −2, p −1,q −1)-disjoint summations. The key idea is to
“pack” two elements of the ground set [n] (say, 1 and n)
into a new element ∗ and apply (n − 1, p,q)-disjoint sum-
mation. We then complete this to (n, p,q)-disjoint summa-
tion using the two (n−1, p−2,q−2)-disjoint summations.

Download English Version:

https://daneshyari.com/en/article/428540

Download Persian Version:

https://daneshyari.com/article/428540

Daneshyari.com

https://daneshyari.com/en/article/428540
https://daneshyari.com/article/428540
https://daneshyari.com

