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1. Introduction

Let (S,+) be a commutative semigroup and let [n] =
{1,2,...,n}. For integers 0 < p,q <n, the (n, p, q)-disjoint
summation problem is as follows. Given a value f(X) e S
for each set X C [n] of size at most p, the task is to output
the function e, defined for each set Y C [n] of size at most

q by

eV)= ) fX, (1

XNYy=¢

where X C [n] ranges over sets of size at most p that are
disjoint from Y.

* This paper is an extended version of a conference abstract by a subset
of the present authors [10].
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We study the arithmetic complexity [6] of (n, p, q)-dis-
joint summation, with the objective of quantifying how
many binary additions in S are sufficient to evaluate (1)
for all Y. As additive inverses need not exist in S, this is
equivalent to the monotone arithmetic circuit complexity,
or equivalently, the monotone arithmetic straight-line pro-
gram complexity of (n, p, q)-disjoint summation.

Our main result is the following. Let Cp pq denote the
minimum number of binary additions in S sufficient to
compute (1, p, q)-disjoint summation, and let us write (fk)

for the sum (g) + () + - -- + (i) of binomial coefficients.
Theorem 1. C;, ¢ < [p (fp) + q(fq)] -min{2P, 29},

This improves upon a preliminary result by a subset of
the present authors [10].

2. Related work and applications

Circuit complexity. If we ignore the empty set, the spe-
cial case of (n,1,1)-disjoint summation corresponds to
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the matrix-vector multiplication task x — Ix, where I is
the complement of the identity matrix, that is, a matrix
with zeroes on diagonal and ones elsewhere. Results
from Boolean circuit complexity concerning this particu-
lar task can be transferred to our setting, implying that
(n, 1, 1)-disjoint summation has complexity exactly 3n — 6
[7,14].

For the special case of (n,n,n)-disjoint summation,
Yates [18] gave an algorithm evaluating (1) for all Y C [n]
using 2" 'n additions in S; Knuth [12, §4.6.4] presents
a modern exposition. Furthermore, this bound is tight in
the monotone setting [11]. Yates’s algorithm has been
used as a component in 2'7n%M time algorithms for graph
k-colouring and related covering and packing problems [3].

In a setting where S is a group and we are al-
lowed to take additive inverses in S, it is known that
the (n, p,q)-disjoint summation can be evaluated with
0(p(/,) +a(j,) operations in S via the principle of
inclusion and exclusion. This has been employed to ob-
tain improved counting algorithms for hard combinatorial
problems, most prominently the (k’;z)no(]) algorithm for

counting k-paths in a graph by Bjorklund et al. [4].

Maximisation. An immediate template for applications of
(n, p, q)-disjoint summation is maximisation under con-
straints. If we choose the semigroup to be (Z U {—o0, oo},
max), then (1) becomes

o1 = 3%, 100

This can be seen as precomputing the optimal p-subset X
when the elements in a g-subset Y are “forbidden”, in a
setting where the set Y is either not known beforehand or
Y will eventually go through almost all possible choices.
Such scenario takes place e.g. in a recent work [8] on
Bayesian network structure learning by branch and bound.

Semirings. Other applications of disjoint summation are en-
abled by extending the semigroup by a multiplication op-
eration that distributes over addition. That is, we work
over a semiring (S, +,-), and the task is to evaluate the
sum

> FO0-g), (2)

XNY=y

where X and Y range over all disjoint pairs of subsets of
[n], of size at most p and g, respectively, and f and g are
given mappings to S. We observe that the sum (2) equals
> ye(Y)-g(Y), where Y ranges over all subsets of [n] of
size at most q and e is as in (1). Thus, an efficient way to
compute e results in an efficient way to evaluate (2).

Counting k-paths. An application of the semiring setup is
counting the maximum-weight k-edge paths from vertex s
to vertex t in a given graph with real edge weights. Here
we assume that we are only allowed to add and com-
pare real numbers and these operations take constant time
(cf. [16]). By straightforward Bellman-Held-Karp type dy-
namic programming [1,2,9] we can solve the problem in
())n°@ time. Our main result gives an improved algo-
rithm that runs in time 2%/2 (,<72)n0(1) for even k. The key

idea is to solve the problem in halves. We guess a mid-
dle vertex v and define w1(X) as the maximum weight
of a k/2-edge path from s to v in the graph induced
by the vertex set X U {v}; we similarly define w;(X) for
the k/2-edge paths from v to t. Furthermore, we define
c1(X) and c3(X) as the respective numbers of paths of
weight wq(X) and w,(X) and put f(X) = (c1(X), w1(X))
and g(X) = (c2(X), wa(X)). These values can be computed
for all vertex subsets X of size k/2 in (k72)n0(1> time.
Now the expression (2) equals the number of k-edge paths
from s to t with middle vertex v, when we define the
semiring operations B and [ in the following manner:
(e, ), w)=(c-c’,w+w) and

(c, w) ifw>w,
(c',w')
(c+c,w) ifw=w'

(c,wH(d,w)= ifw<w,

For the more general problem of counting weighted
subgraphs Vassilevska and Williams [15] give an algo-
rithm whose running time, when applied to k-paths, is
0 (n@k/3) 4 n2k/3+0M) \where 2 < w < 2.3727 is the expo-
nent of matrix multiplication [17].

Computing matrix permanent. A further application is the
computation of the permanent of a k x n matrix (a;j)
over a noncommutative semiring, with k <n an even in-
teger, given by Y, 015(1)020(2) - - - Gko(k)» Where the sum
is over all injective mappings o from [k] to [n]. We ob-
serve that the expression (2) equals the permanent if
we let p=q=k/2 =1¢ and define f(X) as the sum of
(15(1)020(2) - - - Aeo(ey Over all injective mappings o from
{1,2,...,¢} to X and, similarly, g(Y) as the sum of
Ap410(¢+1)Ae+20(¢+2) - - Ako(ky OVer all injective mappings
o from {£+1,£+2,...,k} to Y. Since the values f(X)
and g(Y) for all relevant X and Y can be computed by dy-
namic programming with O(k(u?/z)) operations in S, our
main result yields an upper bound of 0(2"/2k(u:'/2)) oper-
ations in S for computing the permanent.

Thus we improve significantly upon a Bellman-Held-
Karp type dynamic programming algorithm that computes
the permanent with O(k(fk)) operations in S, the best
previous upper bound we are aware of for noncommuta-
tive semirings [5]. It should be noted, however, that algo-
rithms using O (k( u:'/2)) operations in S are already known
for noncommutative rings [5], and that faster algorithms
using O (k(n—k+1)2%) operations in S are known for com-
mutative semirings [5,13].

3. Evaluation of disjoint sums

Overview. In this section, we prove Theorem 1 by giving an
inductive construction for the evaluation of (n, p, q)-dis-
joint summation. That is, we reduce (n, p, q)-disjoint sum-
mation into one (n — 1, p, q)-disjoint summation and two
(n—2,p—1,q—1)-disjoint summations. The key idea is to
“pack” two elements of the ground set [n] (say, 1 and n)
into a new element *x and apply (n — 1, p, q)-disjoint sum-
mation. We then complete this to (n, p, q)-disjoint summa-
tion using the two (n—1, p—2, ¢ —2)-disjoint summations.
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