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We compute a sparse solution to the classical least-squares problem minx ‖Ax − b‖2, where
A is an arbitrary matrix. We describe a novel algorithm for this sparse least-squares
problem. The algorithm operates as follows: first, it selects columns from A, and then
solves a least-squares problem only with the selected columns. The column selection
algorithm that we use is known to perform well for the well studied column subset
selection problem. The contribution of this article is to show that it gives favorable results
for sparse least-squares as well. Specifically, we prove that the solution vector obtained
by our algorithm is close to the solution vector obtained via what is known as the “SVD-
truncated regularization approach”.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fix inputs A ∈ R
m×n and b ∈ R

m . We study least-
squares regression: minx∈Rn ‖Ax − b‖2. It is well known
that the minimum norm solution vector can be found
using the pseudo-inverse of A: x∗ = A†b = (ATA)−1ATb.
When A is ill-conditioned, A† becomes unstable to per-
turbations and overfitting can become a serious problem.
For example, when the smallest non-zero singular value
of A is close to zero, the largest singular value of A† can
be extremely large and the solution vector x∗ = A†b ob-
tained via a numerical algorithm is not the optimal, due
to numerical instability issues. Practitioners deal with such
situations using regularization.

Popular regularization techniques are the Lasso [8], the
Tikhonov regularization [4], and the truncated SVD [6]. The
lasso minimizes ‖Ax − b‖2 + λ‖x‖1, and Tikhonov reg-
ularization minimizes ‖Ax − b‖2

2 + λ‖x‖2
2 (in both cases

λ > 0 is the regularization parameter). The truncated SVD
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minimizes ‖Akx − b‖2, where k < rank(A) is a rank pa-
rameter and Ak ∈ R

m×n is the best rank-k approximation
to A obtained via the SVD. So, the truncated SVD solu-
tion is x∗

k = A†
kb. Notice that these regularization methods

impose parsimony on x in different ways. A combinato-
rial approach to regularization is to explicitly impose the
sparsity constraint on x, requiring it to have few non-zero
elements. We give a new deterministic algorithm which,
for r = O (k), computes an x̂r ∈R

n with at most r non-zero
entries such that ‖Ax̂r − b‖2 ≈ ‖Ax∗

k − b‖2.

1.1. Preliminaries

The compact (or thin) Singular Value Decomposition
(SVD) of a matrix A ∈ R

m×n of rank ρ is

A = (Uk Uρ−k )︸ ︷︷ ︸
UA∈Rm×ρ

(
Σk 0
0 Σρ−k

)
︸ ︷︷ ︸

ΣA∈Rρ×ρ

(
VT

k
VT

ρ−k

)
︸ ︷︷ ︸
VT

A∈Rρ×n

.

Here, Uk ∈ R
m×k and Uρ−k ∈ R

m×(ρ−k) contain the left
singular vectors of A. Similarly, Vk ∈ R

n×k and Vρ−k ∈
0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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Algorithm 1: Deterministic sparse regression

1: Input: A ∈R
m×n , b ∈R

m , target rank k < rank(A), and parameter
0 < ε < 1/2.

2: Obtain Vk ∈R
n×k from the SVD of A and compute

E = A − AVkVT
k ∈R

m×n .

3: Set C = AΩS ∈R
m×r , with r = � 9k

ε2 � and

[Ω,S] = DeterministicSampling(VT
k ,E, r),

4: Set xr = C†b ∈ R
r , and x̂r = ΩSxr ∈ R

n (x̂r has at most r non-
zeros at the indices of the selected columns in C).

5: Return x̂r ∈R
n .

R
n×(ρ−k) contain the right singular vectors. The singu-

lar values of A, which we denote as σ1(A) � σ2(A) �
· · · � σρ(A) > 0 are contained in Σk ∈ R

k×k and Σρ−k ∈
R

(ρ−k)×(ρ−k) . We use A† = VAΣ−1
A UT

A ∈ R
n×m to denote

the Moore–Penrose pseudo-inverse of A with Σ−1
A de-

noting the inverse of ΣA . Let Ak = UkΣkVT
k ∈ R

m×n and
Aρ−k = A − Ak = Uρ−kΣρ−kVT

ρ−k ∈ R
m×n . For k < rank(A),

the SVD gives the best rank k approximation to A in both
the spectral and the Frobenius norm: for Ã ∈ R

m×n , let
rank(Ã) � k; then, for ξ = 2, F, ‖A − Ak‖ξ � ‖A − Ã‖ξ .
Also, ‖A − Ak‖2 = ‖Σρ−k‖2 = σk+1(A), and ‖A − Ak‖2

F =
‖Σρ−k‖2

F = ∑ρ
i=k+1 σ 2

i (A). The Frobenius and the spectral

norm of A are defined as: ‖A‖2
F = ∑

i, j A2
i j = ∑ρ

i=1 σ 2
i (A);

and ‖A‖2 = σ1(A). Let X and Y be matrices of appropri-
ate dimensions; then, ‖XY‖F � min{‖X‖F‖Y‖2,‖X‖2‖Y‖F}.
This is a stronger version of the standard submultiplicativ-
ity property ‖XY‖F � ‖X‖F‖Y‖F, which we will refer to as
“spectral submultiplicativity”.

Given k < ρ = rank(A), the truncated rank-k SVD regu-
larized weights are

x∗
k = A†

kb = VkΣ
−1
k UT

kb ∈R
n,

and note that ‖b − AkA†
kb‖2 = ‖b − UkUT

k b‖2.
Finally, for r < n, let Ω = [zi1 , . . . , zir ] ∈ R

n×r where
zi ∈ R

m are standard basis vectors; Ω is a sampling ma-
trix because AΩ ∈ R

m×r is a matrix whose columns are
sampled (with possible repetition) from the columns of A.
Let S ∈ R

r×r be a diagonal rescaling matrix with positive
entries; then, we define the sampled and rescaled columns
from A by C = AΩS: Ω samples some columns from A and
then S rescales them.

2. Results

Our sparse solver to minimize ‖Ax − b‖2 takes as input
the sparsity parameter r (i.e., the solution vector x is al-
lowed at most r non-zero entries), and selects r rescaled
columns from A (denoted by C). We then solve the least-
squares problem to minimize ‖Cx − b‖2. The result is
a dense vector C†b with r dimensions. The sparse solution
x̂r will be zero at indices corresponding to columns not se-
lected in C, and we use C†b to compute the other entries
of x̂r .

Theorem 1. Let A ∈ R
m×n, b ∈ R

m, rank k < rank(A), and 0 <

ε < 1/2. Algorithm 1 runs in time O (mn min{m,n} + nk3/ε2)

and returns x̂r ∈ R
n with at most r = �9k/ε2� non-zero entries

such that:

Algorithm 2: DeterministicSampling (from [1])

1: Input: VT = [v1, . . . ,vn] ∈ R
k×n; E = [e1, . . . ,en] ∈ R

m×n ; and
r > k.

2: Output: Sampling and rescaling matrices Ω ∈R
n×r ,S ∈R

r×r .
3: Initialize B0 = 0k×k , Ω = 0n×r , S = 0r×r .
4: for τ = 0 to r − 1 do
5: Set lτ = τ − √

rk.
6: Pick index i ∈ {1,2, . . . ,n} and t such that

U (ei) � 1
t � L(vi ,Bτ , lτ ).

7: Update Bτ+1 = Bτ + tvi vT
i . Set Ω i,τ+1 = 1 and Sτ+1,τ+1 =

1/
√

t .
8: end for
9: Return: Ω ∈R

n×r ,S ∈R
r×r .

‖Ax̂r − b‖2 �
∥∥Ax∗

k − b
∥∥

2 + (1 + ε) · ‖b‖2 · ‖A − Ak‖F

σk(A)
.

This upper bound is “small” when A is “effectively”
low-rank, i.e., ‖A − Ak‖F/σk(A) 	 1. Also, a trivial bound
is ‖Ax̂r − b‖2 � ‖b‖2 (error when x̂r is the all-zeros vec-
tor), because ‖CC†b − b‖2 � ‖C0r×1 − b‖2 = ‖b‖2.

In the heart of Algorithm 1 lies a method for select-
ing columns from A (Algorithm 2), which was originally
developed in [1] for column subset selection, where one
selects columns C from A to minimize ‖A − CC†A‖F. Here,
we adopt the same algorithm for least-squares.

The main tool used to prove Theorem 1 is a new “struc-
tural” result that may be of independent interest.

Lemma 2. Fix A ∈ R
m×n, b ∈ R

n, rank k < rank(A), and spar-
sity r > k. Let x∗

k = A†
kb ∈ R

n, where Ak ∈ R
m×n is the rank-k

SVD approximation to A. Let Ω ∈ R
n×r and S ∈ R

r×r be any
sampling and rescaling matrices with rank(VT

kΩS) = k. Let C =
AΩS ∈ R

m×r be a matrix of sampled rescaled columns of A and
let x̂r = ΩSC†b ∈ R

n (having at most r non-zeros). Then,

‖Ax̂r − b‖2 �
∥∥Ax∗

k − b
∥∥

2

+ ∥∥(A − Ak)ΩS
(
VT

kΩS
)†

ΣkUT
kb

∥∥
2.

The lemma says that if the sampling matrix satisfies
a simple rank condition, then solving the regression on the
sampled columns gives a sparse solution to the original
problem with a performance guarantee.

2.1. Algorithm description

Algorithm 1 selects r columns from A to form C and the
corresponding sparse vector x̂r . The core of Algorithm 1 is
the subroutine DeterministicSampling, which is a method
to simultaneously sample the columns of two matrices,
while controlling their spectral and Frobenius norms. De-
terministicSampling takes inputs VT ∈ R

k×n and E ∈ R
m×n;

the matrix V is orthonormal, VTV = Ik . (In our application,
VT = VT

k and E = A − Ak .) We view VT and E as two sets of
n column vectors, VT = [v1, . . . ,vn], and E = [e1, . . . ,en].

Given k and r and the iterator τ = 0,1,2, . . . , r − 1, de-
fine lτ = τ − √

rk. For a symmetric matrix B ∈ R
k×k with

eigenvalues λ1, . . . , λk and l ∈ R, define functions

φ(l,B) =
k∑

i=1

1

λi − l

,

and
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