
Information Processing Letters 113 (2013) 470–476

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A divide and conquer approach and a work-optimal parallel
algorithm for the LIS problem

Muhammad Rashed Alam, M. Sohel Rahman ∗

A�EDA Group, Department of CSE, BUET, Dhaka-1000, Bangladesh

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 August 2012
Received in revised form 15 March 2013
Accepted 22 March 2013
Available online 26 March 2013
Communicated by F.Y.L. Chin

Keywords:
Algorithms
Parallel algorithms
Longest increasing subsequence
Divide and conquer

In this paper, we present a divide and conquer approach to solve the problem of computing
a longest increasing subsequence. Our approach runs in O (n log n) time and hence is
optimal in the comparison model. In the sequel, we show how we can achieve a work-
optimal parallel algorithm using our divide and conquer approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Given a sequence S = S[1], S[2], . . . , S[n], we get a sub-
sequence by deleting 0 or more symbols from S , keeping
the order of the symbols in S intact. A sequence S is said
to be increasing if we have S[i + 1] > S[i] for all 1 � i < n.
Let π = π(1),π(2), . . . ,π(n) be a permutation of [1 . . .n]
and we are given a sequence S = S[1], S[2], . . . , S[n] =
π(1),π(2), . . . ,π(n), i.e., S is a permutation of [1 . . .n].
The Longest Increasing Subsequence (LIS) problem aims to
compute an increasing subsequence (IS) S ′ from S such
that |S ′| is maximum.

The LIS problem is related to a more studied problem
of computing a longest common subsequence (LCS) of two
strings, and to their alignment, in at least two ways. Firstly,
it is easy to realize that, the LIS of S is the LCS between S
and the sequence representing the identity permutation,
i.e., 1,2, . . . ,n. This leads to a straightforward O (n2) time
algorithm implementing the standard dynamic program-
ming technique used for computing a longest common

* Corresponding author.
E-mail addresses: rashed.muhammad@yahoo.com (M.R. Alam),

msrahman@cse.buet.ac.bd (M.S. Rahman).

subsequence [25] (it can indeed be reduced to O (n2/ log n)

[17,6]). Notably, the LCS computation algorithm of Hunt
and Szymanski [14] reduces to an O (n log n) algorithm
for computing LIS under the above setting. Secondly, the
LIS question is involved in the solution to the problem of
whole-genome comparison proposed by Delcher et al. [8]
and in its subsequent variants. Such a comparison is based
on maximal exact matches between the two input genome
sequences, matches that are additionally constrained to oc-
cur only once in each sequence. An LIS is used to extract a
long subsequence of matches that are compatible between
each other, i.e., they appear in the same order along the
two sequences, for producing an alignment of the complete
genomes.

The question is also related to the representation
of permutations, elements of the symmetric group on
{1,2, . . . ,n}, with Young tableaux. This is certainly why
it has attracted a lot of attention. The readers are referred
to [2] for a presentation of Schensted’s algorithm [21] in
this context.

In parallel to using the LCS algorithms to solve the LIS
problem, direct algorithms to solve the problem are also
available in the literature. Fredman [10] devised an algo-
rithm running in O (n log n) time. This solution is clearly
optimal if the elements are drawn from an arbitrary

0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.03.013

http://dx.doi.org/10.1016/j.ipl.2013.03.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:rashed.muhammad@yahoo.com
mailto:msrahman@cse.buet.ac.bd
http://dx.doi.org/10.1016/j.ipl.2013.03.013
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ipl.2013.03.013&domain=pdf

M.R. Alam, M.S. Rahman / Information Processing Letters 113 (2013) 470–476 471

set [10]. Parameterized by the LIS length k, the running
time becomes O (n log k). On integer alphabets, the fastest
known solution runs in O (n log log n) time [26] which re-
lies on a complex priority search tree of van Emde Boas
[24]. Very recently, Crochemore and Porat [7] presented
an O (n log log k) time algorithm for the problem assum-
ing a RAM model. This result improves a 30-year bound
of O (n log k). The algorithm also improves on the previ-
ous O (n log logn) bound. The question of optimality of the
new bound is still open [7]. Note that the algorithm of
Crochemore and Porat [7] assumes a permutation of [1..n]
as input.

A few parallel algorithms also have been proposed for
the LIS problem in the literature. A generic approach is
to reduce the problem to computing the longest common
subsequence (LCS) of two strings of length n. For example
in [12] the authors presented one such approach having
cost O (n2/p) on p processors. On the EREW PRAM model
with p processors, Nakashima and Fujiwara [18,19] pre-
sented two algorithms with O (m(n

p + logn)) and O (log n +
n logn

p + m2 log n
p + m log p) time,1 respectively. Semé [22]

gave a CGM algorithm that runs in O (n log(n/p)) time.
Krusche and Tiskin [15] have also given a parallel algo-
rithm obtaining a computational cost of O (n1.5/p) in BSP
model [23].

In this paper, we take a different approach to solve the
LIS problem. In particular we attack the problem using a
divide and conquer approach. Using our approach we are
able to devise a novel algorithm to solve LIS that also runs
in O (n log n) time. In the sequel, we show how our ap-
proach provides us with a parallel work optimal algorithm
considering the comparison model. The contribution of this
paper is as follows. Firstly, since many multithreaded algo-
rithms involving nested parallelism follow naturally from
the divide-and-conquer paradigm, our approach opens a
new and hitherto unexplored avenue to get direct multi-
processor solutions for the LIS problem. And indeed the
parallel algorithm devised in this paper based on the se-
rial divide and conquer algorithm presented outperforms
all the parallel algorithms for LIS in the literature. Sec-
ondly, all the sequential algorithms for the LIS problem in
the literature are online. As a result, being offline, our ap-
proach may turn out to be at least theoretically interesting
and may present many enthusiastic researchers with some
new ideas to devise even more efficient offline algorithms.

The rest of the paper is organized as follows. In Sec-
tion 2 we will recall the basic well-known algorithm for
solving the LIS problem. In Section 3 we present our divide
and conquer approach to solve the problem. In Section 4
we discuss the parallel algorithm and a brief comparison
with other parallel algorithms. Finally we conclude in Sec-
tion 5.

2. Basic algorithm

In our divide and conquer approach we make use of
the basic algorithm, referred to as BAlg henceforth, for
computing an LIS. For the sake of completeness, in this

1 Here, m is the number of decreasing subsequences in the solution.

section we briefly discuss how BAlg works. In BAlg, the
elements are processed in the order π(1),π(2), . . . ,π(n).
Conceptually, we compute for each length � = 1,2, . . . ,
the smallest last element that can end an increasing sub-
sequence of that length. It is called the best element for
that length and denoted by B[�]. Note that best elements
B[1], B[2], . . . , B[�] form an increasing sequence. This fact
is used for the choice of a data structure to implement the
list and is essential for efficient computation.

BAlg works as follows. Consider the ith iteration where
1 � i � n. Element π(i) can extend any increasing subse-
quence ending at an element of B (say, B[j]) such that
B[j] is smaller than π(i). Suppose, up to now, i.e., for
π(1),π(2), . . . ,π(i − 1), we have computed B[1] . . . B[�].
If π(i) > B[�], then we must also have π(i) > B[i], 1 �
i � �. In this case, π(i) can produce an IS longer than
any previous one. So, we set B[� + 1] = π(i). Otherwise,
π(i) becomes the best element for an existing length: it
replaces the smallest element greater than π(i), i.e., the
successor of π(i) in B . In both cases, we set the parent
of π(i), namely P (i), to the position of largest element
smaller than π(i), i.e., its predecessor in B . We can find the
original LIS by traversing the P -array backward. Notably,
B[0] is set to 0.

The runtime analysis of BAlg is straightforward. At the
ith iteration the index of the successor/predecessor of π(i)
can be found using binary search in O (log n) time. Hence
the O (n log n) running time of BAlg follows readily.

3. A divide and conquer approach

In this section, we discuss our divide and conquer ap-
proach. Without the loss of generality we can assume n
to be even. In order to compute the LIS of S , we divide S
into two subsequences S1 and S2 of equal length n/2. Now
we solve the LIS problem for S1 and S2. In other words,
using BAlg, we compute Bk and Pk , to compute the LIS
of Sk , where k ∈ {1,2}. Then we compute the B and P ar-
rays for S using Bk , Pk , k ∈ {1,2}. Notably, for our divide
and conquer approach we will slightly extend the structure
of the B array as follows. In particular, we will assume
B to be an array of 2-tuple, where each entry of B will
have two attributes, namely, val and pos. Hence, inserting
Si in B at some index k implies that B[k + 1].val = S[i]
and B[k + 1].pos = i. However, since S is a permutation,
the elements in S1 and S2 are distinct and without mul-
tiple occurrences. Hence, the parent array P can be global
and we don’t need two separate parent arrays P1 and P2.
Our divide and conquer algorithm, referred to as the D&C
algorithm henceforth works as follows.

Divide: We divide S in two subsequences S1 and S2 as fol-
lows. We delete from S the elements that are greater than
(less than or equal to) n/2 to get S1 (S2). In other words,
elements that are less than or equal to (greater than) n/2
appear in S1 (S2).

Conquer: We perform the LIS computation for the two
subsequences S1 and S2 recursively, i.e., compute B1, B2
and the P array (globally) for S1 and S2.

Download English Version:

https://daneshyari.com/en/article/428546

Download Persian Version:

https://daneshyari.com/article/428546

Daneshyari.com

https://daneshyari.com/en/article/428546
https://daneshyari.com/article/428546
https://daneshyari.com

