
Information Processing Letters 113 (2013) 251–254

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Coordination mechanism for selfish scheduling under a grade
of service provision ✩

Li Guan, Jianping Li ∗

Department of Mathematics, Yunnan University, Kunming 650091, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 November 2011
Received in revised form 17 January 2013
Accepted 18 January 2013
Available online 23 January 2013
Communicated by J. Xu

Keywords:
Scheduling
Selfish scheduling
Grade of service
Coordination mechanism
Makespan
Price of anarchy

In this paper, we study the problem of selfish scheduling game under a grade of service
provision, where all machines and all jobs are labeled with the different grade of service
(GoS) levels such that a job J can be assigned to execute on machine M only when the GoS
level of machine M is not higher than the GoS level of job J . We consider two coordination
mechanisms for this selfish scheduling game: the makespan policy and the LG-LPT policy.
For the first mechanism, we show that the price of anarchy is exactly 3

2 for two machines

and Θ(
logm

log logm) for m (� 3) machines, respectively. For the second mechanism, we point

out that the price of anarchy is 5
4 for two machines and 2 − 1

m−1 for m (� 3) machines,
respectively, and we finally analyze the convergence to a Nash equilibrium of the induced
game.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The game theory is to study some situations concern-
ing selfish agents who are interested in achieving their
individual goals, as well as in opposing to obtain a global
optimum. The agents act selfishly until reaching some
equilibria. In general, the social optimum is not typically
obtained. Quantifying the efficiency loss due to selfish be-
havior is an important research interest in such settings.
The price of anarchy (POA, for short), which was first pro-
posed by Koutsoupias and Papadimitriou [8], is the most
popular measure to quantify the inefficiency of equilib-
rium. Precisely, the price of anarchy of a game is defined
as the ratio between the worst objective function value
of an equilibrium of the game and the objective function

✩ Supported by the National Natural Science Foundation of China
[Nos. 10861012, 61063011], the Project of the First 100 High-level Over-
seas Talents of Yunnan Province IRTSTYN.

* Corresponding author. Tel.: +86 871 65033701; fax: +86 871
65033700.

E-mail addresses: guanli@ynu.edu.cn (L. Guan), jianping@ynu.edu.cn
(J. Li).

value of an optimal outcome. We only consider the pure
Nash equilibrium in this paper.

How can we reduce the inefficiency of equilibrium in
a game? An important approach is defined as a coordi-
nation mechanism, which is a local policy that assigns
an outcome to each strategy s, where the outcome of such
a strategy s is a function of the agents who have chosen
the strategy s. The purpose is to lead the independent and
selfish choices of the agents to obtain a better result in
a socially desired outcome. Obviously, the primary goal of
a coordination mechanism for the designer is to guarantee
the existence of pure Nash equilibria for the induced game.

The selfish scheduling game problem has been stud-
ied extensively in the literatures [1–4,7], which is defined
as follows. There are n jobs owned by some indepen-
dent agents, say J1, J2, . . . , Jn , and m machines, say
M1, M2, . . . , Mm , and some processing times pij , where pij
indicates the processing time for the job J i to be executed
on the machine M j , each agent may select a machine to
minimize his own completion time. The social objective is
to minimize the makespan, i.e., the maximum completion
time of m machines. A pure Nash equilibrium is an as-
signment of these n jobs to be executed on m machines
such that no job has an unilateral incentive to switch to

0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.01.014

http://dx.doi.org/10.1016/j.ipl.2013.01.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:guanli@ynu.edu.cn
mailto:jianping@ynu.edu.cn
http://dx.doi.org/10.1016/j.ipl.2013.01.014
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ipl.2013.01.014&domain=pdf

252 L. Guan, J. Li / Information Processing Letters 113 (2013) 251–254

another machine. A coordination mechanism for this game
is a set of scheduling policies, one for each machine, that
determines the way to schedule the jobs on that machine.
The price of anarchy of a selfish scheduling game is the
ratio between the maximum makespan in all pure Nash
equilibria and the minimum makespan in all available as-
signments.

In service industry, the service providers often pro-
vide differentiated services to the special customers who
are more valued than the regular customers. One simple
scheme for providing differentiated services is to label all
machines and all jobs with the different grade of service
(GoS, for short) levels. A job J can be assigned to execute
on a machine M only when the GoS level of machine M is
not higher than the GoS level of job J . Thus, when we la-
bel relatively higher GoS levels on the jobs of more valued
customers, we can provide a better service to them.

The model of a selfish scheduling game under a GoS
provision is defined as follows. There are a set of m ma-
chines, say M = {M1, M2, . . . , Mm}, and a set of n jobs,
say J = { J1, J2, . . . , Jn}. Each job J j owned by a selfish
agent of the game has a processing time p(J j), and it is
labeled by a GoS level g(J j). Each machine Mi is also la-
beled by a GoS level g(Mi). The job J j is allowed to be
executed on the machine Mi only when g(J j)� g(Mi). We
may assume that all jobs can be scheduled on these m ma-
chines.

In this paper, we study the selfish scheduling game
under a GoS provision, and we obtain main two results:
(1) For the makespan policy, we prove that the price of an-
archy is exactly 3

2 for two machines and Θ(
logm

log logm) for m
(� 3) machines, respectively; (2) For the LG-LPT policy, we
point out that the price of anarchy is 5

4 for two machines
and 2− 1

m−1 for m (� 3) machines, respectively, and we fi-
nally analyze the convergence to a Nash equilibrium of the
induced game.

This paper is organized as follows. In Section 2, we
consider the makespan policy and then obtain the results
in (1); In Section 3, we consider the LG-LPT policy and
then obtain the results in (2).

2. Makespan policy

In the makespan policy, each machine processes the
jobs assigned in parallel. If a job J j is assigned to a ma-
chine Mi , the completion time of job J j is equal to the
completion time of machine Mi . For any makespan policy,
the pure Nash equilibrium of the induced selfish schedul-
ing game always exists [7]. This fact is also true for
the selfish scheduling game under a GoS provision since
the latter is a special version of selfish scheduling game.
We first consider POA for two machines, and we obtain
the first result as follows.

Theorem 1. For two machines, the price of anarchy of the
makespan policy is exactly 3

2 for the selfish scheduling game un-
der a grade of service provision.

Proof. If the GoS levels of two machines are same or the
GoS levels of all jobs are same, our scheduling problem be-
comes the ordinary identical parallel machine scheduling

problem P‖Cmax [5]. From the earlier work [7], we know
the fact that the price of anarchy of the makespan pol-
icy for P‖Cmax is 4

3 for these two machines, which is less
than 3

2 .
Now we consider the state that the two machines

are labeled with two different GoS levels meanwhile
all jobs are labeled with two different GoS levels, re-
spectively. The set of two machines is M = {M1, M2},
and for convenience, we may assume that g(M1) = 1,
g(M2) = 2. The set of n jobs is J = { J1, J2, . . . , Jn}. Let
Ji = { J j | g(J j) = i, 1 � j � n} and Pi = ∑

J j∈Ji
p(J j),

where i = 1,2. By distinguishing the following two cases,
we shall prove that POA is at most 3

2 .

Case 1. P1 > P2
In this case, the induced game has only one Nash equi-

librium, where all jobs in J1 are assigned to execute
on M1 and all jobs in J2 are assigned to execute on M2.
This equilibrium schedule is also an optimum schedule.
Thus, POA is equal to 1.

Case 2. P1 � P2
Let OPT denote the optimal value, i.e., the minimum

makespan. We have

OPT � max

{
max

1� j�n
p(J j), P1,

P1 + P2

2

}
.

Let μ be any Nash equilibrium and li the completion time
of the machine Mi in μ, where i = 1,2. Let cost(μ) be
the makespan of μ, i.e., cost(μ) = max{l1, l2}. We consider
the two subcases.

(1) cost(μ) = l1
In this subcase, without loss of generality, we may as-

sume that there is at least one job in J2 assigned to ex-
ecute on machine M1, otherwise we obtain cost(μ) = OPT
and the conclusion follows trivially. Let J∗ be any job in J2
assigned to execute on machine M1. Suppose that if the
job J∗ changes its strategy, by moving from machine M1 to
machine M2, then the completion time of J∗ should not be
decreased, by the fact that μ is a Nash equilibrium. It fol-
lows l1 � l2 + p(J∗). Thus, we obtain

2 cost(μ) � l1 + l2 + p
(

J∗) = P1 + P2 + p
(

J∗) � 3OPT

which implies cost(μ) � 3
2 OPT .

(2) cost(μ) = l2
In this subcase, let J∗ be any job assigned to M2. Ob-

viously, we have g(J∗) = 2. Since μ is a Nash equilibrium,
it follows l2 � l1 + p(J∗). Thus, we get

2 cost(μ) � l2 + l1 + p
(

J∗) = P1 + P2 + p
(

J∗) � 3OPT

which also implies cost(μ)� 3
2 OPT .

To sum up, we prove that POA is at most 3
2 for two

machines.
The following example shows that this upper bound 3

2
on POA is tight.

Suppose that we have M = {M1, M2} and J = { J1,

J2, J3}, where g(M1) = 1, g(M2) = 2, g(J1) = 1, g(J2) =
g(J3) = 2, p(J1) = p(J2) = 1 and p(J3) = 2. An opti-
mal schedule assigns two jobs J1 and J2 to be executed

Download English Version:

https://daneshyari.com/en/article/428554

Download Persian Version:

https://daneshyari.com/article/428554

Daneshyari.com

https://daneshyari.com/en/article/428554
https://daneshyari.com/article/428554
https://daneshyari.com

