Information Processing Letters 111 (2011) 447-452

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

n
Information
Processing Letters

Repeated detection of conjunctive predicates in distributed executions

Ajay D. Kshemkalyani

University of Illinois at Chicago, Chicago, IL 60607, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 13 September 2010

Received in revised form 28 December 2010
Accepted 23 January 2011

Available online 4 February 2011
Communicated by G. Chockler

Given a conjunctive predicate ¢ over a distributed execution, this paper gives an algorithm
to detect all interval sets, each interval set containing one interval per process, in which
the local values satisfy the Definitely(¢) modality. The time complexity of the algorithm
is 0(n3p), where n is the number of processes and p is the bound on the number of
times a local predicate becomes true at any process. The paper also proves that unlike the

Possibly(¢) modality which admits O (p") solution interval sets, the Definitely(¢) modality

Keywords:

Distributed computing
Predicate detection
Intervals

Monitoring

Causality

Global state

admits O (np) solution interval sets. The paper also gives an on-line test to determine
whether all solution interval sets can be detected in polynomial time under arbitrary fine-
grained causality-based modality specifications.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Predicate detection over a distributed execution is im-
portant for various purposes such as monitoring, syn-
chronization and coordination, debugging, and industrial
process control. Due to asynchrony in message transmis-
sions and in local executions, different executions of the
same distributed program go through different sequences
of global states. We often need to make assertions about
all states in all possible executions of a distributed pro-
gram. Therefore, two modalities have been defined under
which a predicate ¢ can hold for a distributed execu-
tion [4].

e Possibly(¢): There exists a consistent observation of
the execution such that ¢ holds in a global state of
the observation.

o Definitely(¢): For every consistent observation of the
execution, there exists a global state of it in which ¢
holds.

E-mail address: ajay@uic.edu.

0020-0190/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2011.01.016

An online centralized algorithm to detect Possibly(¢) and
Definitely(¢) for an arbitrary predicate ¢ was given in [4].
The algorithm works by building a lattice of global states.
Although it detects generalized global predicates, the time
complexity of the algorithm is e", where e is the max-
imum number of events on any process, and n is the
number of processes. To reduce the complexity of the al-
gorithm, researchers focused on special classes of global
predicates. Conjunctive global predicates form a popular
class for many applications [11], and they can be detected
under these modalities in polynomial time. This paper con-
siders only conjunctive predicates.

For conjunctive predicates, there are time intervals at
each process during which the local predicate is true.
A global solution under the Possibly or Definitely modal-
ity identifies Z, a set of intervals, containing one interval
per process in which the local predicate is true, such that
the intervals in Z are related by the modality. During such
intervals, actual values of the variables, those in consecu-
tive local states, and those in the corresponding composite
global states, do not matter [1,5-8,17]. (Identifying each
composite global state in a set of intervals is relevant more
for non-conjunctive predicates, for which the algorithm in
[4] or more efficient techniques like computation slicing
[15,16] can be used.)

http://dx.doi.org/10.1016/j.ipl.2011.01.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:ajay@uic.edu
http://dx.doi.org/10.1016/j.ipl.2011.01.016

448 A.D. Kshemkalyani / Information Processing Letters 111 (2011) 447-452
P n 2n 3n n(p—1)+n
n ; f i i F——————
! 3 n+3 2n+3 J n(p—1)+3
b : H 1 RS ——
2 n+2 2n+2 n(p-1)+2
P [1T 1T | — |
2 L 1 1 T
1 n+l 2n+l1 n(p-1)+1
B H H L ——

Fig. 1. Example execution using a timing diagram to illustrate the bound on the number of solution interval sets. The message-passing is not shown.

For an execution in which a local predicate becomes
true at most p times at a process and n is the number
of processes, the best algorithms for detecting Possibly(¢)
[6] and Definitely(¢) [7] have time complexity O (n?p) at a
central server process. Several distributed algorithms have
also been proposed, e.g., [1,5,8,17]. However, all these al-
gorithms detect only the first interval set in which ¢ is
satisfied under the modality.

We address the problem of identifying all solution in-
terval sets Z in a distributed execution that satisfy the Def-
initely modality, not just the first solution set. This problem
arises in sensing applications where the monitor program
has to raise an alarm each time a predicate becomes true
under a certain modality. For example, (i) reset ther-
mostat to 27deg each time “motion detect-
ed” A “temp > 30deg” becomes true; (ii) lock

the office_door each time “lights off” A
“no motion detected” becomes true; and (iii)
raise alarm each time “stock_S > 85" A

“commodity_ C < 20” becomes true. This problem
cannot be solved by simply re-executing the algorithms
[6,7] to detect the modality (Possibly or Definitely, respec-
tively). To appreciate this, consider an example execution,
such as that in Fig. 1, in which there is no message com-
munication, or messages might be sent after each interval
but asynchronously reach other processes at the end of
the execution. In this case, it is necessary for each inter-
val to be considered as a possible candidate for inclusion
in a global solution set Z. It is not hard to observe that
there are p" “interval sets” in the state-interval lattice.
Under the Possibly modality, all of these interval sets are
solutions to our problem - hence enumerating them will
cost 2(p") time. The current algorithm for detecting the
first solution that satisfies Possibly (running in O (np)) is
clearly inadequate.

We note that the algorithm for detecting Definitely is
very similar to that for Possibly and both cost O(n2p) to
detect the first solution set. Although we cannot polynomi-
ally detect all solution sets for Possibly, this paper proposes
an algorithm that detects every solution set that satisfies
Definitely in O (n®p) time. We also prove that there are
only O(np) solutions (interval sets) that can satisfy the
predicate under the Definitely modality, unlike the case for
the Possibly modality which admits up to O(p™) solution
sets.

2. Model and background

We assume an asynchronous distributed system in
which n processes communicate by reliable message pass-

ing. Messages may be delivered out of order on the chan-
nels. A poset event structure model (E, —), where — is
an irreflexive partial ordering representing the causality
relation [12] on the event set E, is used as the model for
a distributed system execution. Three kinds of events are
considered: send, receive, and internal events. E is parti-
tioned into local executions at each process. Let N denote
the set of all processes. Each E; is a totally ordered set of
events executed by process P;. We assume vector clocks
are available [13,14]. Each process maintains a vector clock
V of size n = |N| integers, by using the following rules.
(1) Before an internal event at process P;, the process P;
executes V;[i] = Vi[i] + 1. (2) Before a send event at pro-
cess Pj, the process P; executes V;[i] = V;[i] + 1. It then
sends the message timestamped by V;. (3) When process
P; receives a message with timestamp T from process
P;, Pj executes (Vk € [1,...,n]) V;[k] = max(V;[k], T[k]);
V[j1=V;l[jl1+1 before delivering the message. The times-
tamp of an event is the value of the vector clock when the
event occurs.

A conjunctive predicate ¢ = /\; ¢;, where ¢; is a pred-
icate defined on variables local to process P;. Let us de-
fine durations of interest at each process as the durations
in which the local predicate is true. Such an interval at
process P; is identified by the (totally ordered) subset of
adjacent events of E; for which the predicate is true. We
use V; (X) and Vi+ (X) to denote the vector timestamp for
interval X at process P; at the start and the end of X, re-
spectively.

We assume that intervals X and Y occur at P; and P},
respectively, and are denoted as X; and Y;, respectively.
We also assume that there are a maximum of p intervals
at any process. For any two intervals X and X’ that occur
at the same process, if X ends before X’ begins, we say
that X’ is a successor of X and denote it as X' = succ(X).

For intervals X and Y, we define: X — Y iff dx €
X,3y € Y,x — y. The relation < is used by the algo-
rithm to detect Definitely(¢). In terms of vector times-
tamps, X; <= Y; iff V7 (Xp[i] < Vf(Yj)[i].

The following two results [7,9] are used in the context
of detecting Definitely(¢).

Theorem 1. Let ¢; ; = ¢; A ¢j. Definitely(¢;) holds if and only
ifXij—Yjand Y; — X;.

Theorem 1 holds when the local predicate is false in the
initial state and final state. To uphold the theorem when ¢;
is true in these states, one can engineer as follows. When
¢; is true in the initial state, P; broadcasts a control mes-
sage that is received by all in their initial states, inducing

Download English Version:

https://daneshyari.com/en/article/428639

Download Persian Version:

https://daneshyari.com/article/428639

Daneshyari.com

https://daneshyari.com/en/article/428639
https://daneshyari.com/article/428639
https://daneshyari.com

