Information Processing Letters 111 (2011) 318-322

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

n
Information
Processing Letters

The indexing for one-dimensional proportionally-scaled strings ™

Yung-Hsing Peng, Chang-Biau Yang*, Chiou-Ting Tseng, Chiou-Yi Hor

Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan

ARTICLE INFO

ABSTRACT

Article history:

Received 7 February 2009

Received in revised form 21 November 2010
Accepted 1 December 2010

Available online 21 December 2010
Communicated by EY.L. Chin

Related problems of scaled matching and indexing, which aim to determine all positions
in a text T that a pattern P occurs in its scaled form, are considered important because
of their applications to computer vision. However, previous results only focus on enlarged
patterns, and do not allow shrunk patterns since they may disappear. In this paper, we
give the definition and an efficient indexing algorithm for proportionally-scaled patterns

that can be visually enlarged or shrunk. The proposed indexing algorithm takes O(|T|)

Keywords:

Design of algorithms
String matching
Scale

Proportional

time in its preprocessing phase, and achieves O(|P| + U, 4 logm) time in its answering
phase, where |T|, |P|, Up, and m denote the length of T, the length of P, the number of
reported positions, and the length of T under run-length representation, respectively.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the field of string processing, exact string matching
is a classical problem which asks for all positions of a
pattern string P in a text string T. When both P and T
are one-dimensional strings, this problem can be solved in
O(|T|+|P|) time with the well-known Knuth-Morris-Pratt
algorithm [12], where |T| and |P| denote the length of T
and P, respectively.

Aside from the exact string matching problem, the ex-
act string indexing problem asks one to preprocess T, so
that the positions of P in T can be determined more effi-
ciently. That is, T can be thought of as a database whereas
P is the target string. Therefore, the performance of an
indexing algorithm can be measured by its preprocessing
phase with T and answering phase with P. For fixed al-
phabets, related techniques of suffix trees [10,16] and suf-
fix arrays [11] can achieve both the optimal preprocessing
time O(|T|) and answering time O(|P| + U), denoted as
(0(T]), O(|P| + U)), where U represents the number of
reported positions.

* This research work was partially supported by the National Science
Council of Taiwan under contract NSC-97-2221-E-110-064.
* Corresponding author.
E-mail address: cbyang@cse.nsysu.edu.tw (C.-B. Yang).

0020-0190/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.12.001

Problems of inexact matching [2,3,6,8] have also drawn
much attention recently. Among them, related problems
that involve matching [2-5] or indexing [14,15,17] scaled
patterns are considered not only interesting, but also real-
istic in the field of computer vision. One should note that,
however, these algorithms [2-5,14,15,17] only discuss en-
larged patterns but avoid shrunk ones. As mentioned in
the previous literature [2], this is because the pattern may
disappear, which would cause a scaled match at every po-
sition in T.

Nonetheless, from the perspectives of computer vision
and algorithm, it is still worth studying the effect of a
shrunk pattern, even if some presumptions must be made
to prevent the pattern from disappearance. Therefore, we
refer to Eilam-Tzoreff and Vishkin’s multiplying transfor-
mation [9], which is known as the first matching prob-
lem that involves scaling. With a slight modification to
their model, we define the proportionally-scaled pattern,
which could be enlarged or shrunk, but never disappears.
Also, with our modification, a proportionally-scaled pat-
tern, which is different from those derived in the past
[2-4,9], is natural (visually proportional) to human eyes. In
this paper, we propose an efficient algorithm for indexing
proportionally-scaled patterns. To the authors’ knowledge,
this is the first indexing algorithm for both enlarged and
shrunk patterns.

http://dx.doi.org/10.1016/j.ipl.2010.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:cbyang@cse.nsysu.edu.tw
http://dx.doi.org/10.1016/j.ipl.2010.12.001

Y.-H. Peng et al. / Information Processing Letters 111 (2011) 318-322 319

The rest of this paper is organized as follows. In Sec-
tion 2, we give an overview for required techniques. In Sec-
tion 3, we give our definition for a proportionally-scaled
pattern, and then explain a simple linear time matching
algorithm adapted from previous results [3,9]. After that,
we propose our indexing algorithm in Section 4. Finally,
in Section 5 we give two interesting problems for future
study.

2. Required techniques

For any string S, let S[i] denote the ith character in S,
and S[i, j] denote the substring ranging from S[i] to S[j],
for 1 <i < j<|S|, where |S| denotes the length of S. As-
sume T’ =t|'t?...t;" be the run-length representation of
T with |T’| =m, where t; € X, for 1 <i<m, tj #tjq1,
1<j<m-—1 and r; denotes the run length of t;. There-
fore, one can easily map each character T'[i] to the run
T[Z'j;]1 rj+ 1. Y57l in T. Also, let P’ = p}'p3? ... py"
be the run-length represented string of P with |P/| =u. In
the following, we briefly describe the required techniques.

2.1. Suffix arrays for integer alphabets

The suffix array T4 of T is an O(|T|)-space data struc-
ture that stores each suffix of T according to their lexical
order. With additional information for the longest com-
mon prefixes, to search a given string P in T, one can
perform a binary search on T4, which achieves the an-
swering time O (|P|+ U + log|T|) [13]. The required time
for constructing T, is equal to that for constructing the
suffix tree of T [10,16]. For constant-sized alphabets, T4
can be constructed in O(|T|) time [16]. For integer alpha-
bets, Farach-Colton et al. [10] first proposed the following
result.

Theorem 1. (See [10].) Given a string T over {1, 2, ..., |T|}, the
suffix array T4 of T can be constructed in O (|T|) time.

Based on Theorem 1, one can construct the suffix array
of T in O(|T|+ Sort) time, where Sort denotes the required
time to transform T into a string over {1,2,...,|T|}.
Therefore, for unbounded alphabets, it takes 2(|T|log|T])
time to construct the suffix array with existing sorting al-
gorithms. Note that it is not necessary to transform the
suffix array over {1, 2,...,|T|} back into X, since the lexi-
cal order still holds.

2.2. The range minimum query and the three-sided query

Given an array A of n numbers, the range minimum
query (RMQ) asks for the minimum element in the subar-
ray Aliy,iz], for any given interval 1 <i; <i < n. Bender
and Farach-Colton [7] gave an elegant algorithm for pre-
processing A, so that each RMQ can be answered in con-
stant time. Let RMQ4 (i1, i2) be the index of the minimum
element in the subarray Aliq, i2]. We summarize their re-
sult as follows.

Theorem 2. (See [7].) Given an array A of n numbers, one
can preprocess A in O (n) time such that for any given interval
[i1, 2], one can determine RMQ 4 (i1, i2) in O(1) time.

Applying Theorem 2 recursively, one can easily verify
the following lemma, which also summarizes the three-
sided query [1].

Lemma 1. (See [1].) Given an array A of n numbers and a
threshold c, one can preprocess A in O (n) time, so that for any
given interval [iq, i), it takes O (Uy) time to report all indices
i1 < i’ <y satisfying A[i’] < ¢, where Uy is the number of re-
ported indices.

3. Matching proportionally-scaled patterns

In this section, we give our definition for a propor-
tionally-scaled pattern, which is a modification to previous
results [3,9]. In addition, to provide a better understand-
ing to Section 4, we explain a simple linear time matching
algorithm adapted from Eilam-Tzoreff and Vishkin's algo-
rithm [3,9].

3.1. Definition

Recall that in Eilam-Tzoreff and Vishkin’s scaling model
[9], each character is a real number. Therefore, the -
scaling of a character r is written as ar, where « is also
a real number. Taking T = (3.8)(2.55)(3.3)(8.1)(3.45)(5.6)
and P = (1.7)(2.2)(5.4)(2.3) for example, T[2,5] is the
(1.5)-scaling of P. However, one should note that this
scheme is not the case for matching run-length repre-
sented strings. Taking T’ = b%*c2a®b® and P’ = b3c2a’b°®
for example, P’ still matches with T’, even though there
does not exist any a-scaling of (3)(2)(5)(5) that equals to
(4)(2)(5)(9). In the following, we explain how to modify
Eilam-Tzoreff and Vishkin’s model, obtaining the definition
for proportionally-scaled patterns.

For clarity, we begin with the scaling function defined
by Amir et al. [2]. Given P = p{'p3’...py", the a-scaling
of P, denoted by &y (P), for any real number o > 0, repre-
sents the string pl*/ pi*2) . pl®) [2]. As an example,
suppose we have T = a®b*c?a®bc*a?b* and P = a®hbc3a’.
In this case, one can verify that 83 (P)= a*b%ca? is a sub-
string of T, but P is not. To apply the scale 0 < @ < 1
to the same example, however, one can see that for % <
o< % 8« (P) has only one symbol “b”. In addition, the
pattern disappears for any o < %. To avoid the problem of
symbol disappearance, which causes invalid matches, we
give a new definition of a proportionally-scaled pattern of
P as follows.

Definition 1. Given

[asi][as2] [oesy]

P=pi'p}...p0, 8«(P)=p;" " ' py L py

is a proportionally-scaled pattern of P if

(1) >0,
(2) St — 125l gor o

Sj fas;]

S [asy] Su
() & 2 as7 AN 35 < g7

<j<u-—2,and
<

Download English Version:

https://daneshyari.com/en/article/428644

Download Persian Version:

https://daneshyari.com/article/428644

Daneshyari.com

https://daneshyari.com/en/article/428644
https://daneshyari.com/article/428644
https://daneshyari.com/

