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1. Introduction

For analyzing the semantics of non-deterministic and/or
concurrent programming languages, there is an increas-
ing use of combinations of may-, should-, and must-con-
vergence predicates in connection with contextual equiv-
alence. For deterministic calculi (for instance [1,9,5,10]),
Morris’ contextual equivalence based on termination, i.e.
on may-convergence appears to be sufficient, where may-

convergence means: e}, < v :e 5 v where v is a value,
and where two program expressions s,t are contextually
equivalent, if P[s]| < P[t]| for every program context P.

For non-deterministic program calculi, may-convergence
alone is arguably insufficient, since, e.g., the programs 0
and (choice 0L1) cannot be distinguished, and since un-
der may-convergence alone, simple choice and bottom-
avoiding amb cannot be distinguished. There are investi-
gations using the combination of may-convergence and
must-convergence (must-testing equivalence) (see [4,6])
and others based on the combination of may- and should-
convergences (should-testing equivalence); see e.g. [2,12,8,
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11]. Must-convergence of an expression e holds, denoted
e}, if there are no infinite reduction sequences starting
from e, and should-convergence of e holds, denoted e},
if every reduct of e is may-convergent (denoted 0] in
this paper). Simplicity of the definition is the advantage
of must-testing equivalence whereas the invariance of the
contextual equivalence under the restriction to fair reduc-
tion sequences is an advantage of should-testing equiv-
alence (see e.g. [2,12]). Should- and must-convergences
have a different view on weakly divergent expressions
where e is weakly divergent (see [7]) if it reduces infinitely
but never looses the possibility to terminate successfully.
A weakly divergent expression e is should-convergent, but
not must-convergent.

As a consequence, should-testing equivalence is insen-
sitive w.r.t. weak divergences, and on the other hand must-
testing equivalence identifies weakly divergent expressions
with expressions that may reduce to an error (which
strongly diverges). Thus, it may also be reasonable to ar-
gue that all three convergences should be combined.

The modal-logical construction of should-convergence
gives rise to the question, whether there are further such
constructions resulting in new test predicates and corre-
sponding contextual equivalences. We answer this question
by the following results: Starting with |, and generat-
ing further convergence predicates using 0O, <, V, A, and
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— leads to 8 convergence predicates, but w.r.t. contextual
equivalence there is no change: only should-testing equiv-
alence can be defined (Main Theorem 2.8). The second
result (Theorem 3.9) is that starting with |}, using the
same generators, an infinite family of convergence predi-
cates will be generated, including | and |}, and in general
an infinite family of contextual equivalences.

2. Should- and must-testings

The triple (E, V,—) is called a reduction structure, pro-
vided VCE#®W — CExE, and e > ¢ = e ¢ V. The
reflexive transitive closure of — is denoted as —>. The idea
is that E is the set of expressions of a programming calcu-
lus, — the small-step reduction relation, and V the (irre-
ducible) values, i.e. successful outcomes of reductions. Note
that there may be irreducible elements e € E with e ¢ V,
where e € E is called irreducible, iff there is no e’ € E with
e — ¢/. We will analyze unary predicates over E, which
are always written in postfix. The first predicate is eV,
which holds iff e € V. Note that (eV Ae 5 e’) implies that
e = ¢’'. This predicate, however, will not be used for obser-
vations. We will also use the predicates T and ¢, where
eT is always true, and e is always false. For predicates
P, Q we write P C Q if eP = eQ for all reduction struc-
tures (E,V,—) and forallee E,and P =Q iff P C Q and
Q C P. We write P # Q, iff for some reduction structure
(E,V,—) and some e € E, eP #eQ. The notation P C Q
means that P € Q but P # Q.

Definition 2.1. We define the following predicate-genera-
tors: Given predicates P, Q, the following new predicates
can be defined:

e(OP):=3e':e > e ne'P,
e(OP):=Ve :e 5> e =e'P,
e(—P):=—eP,
e(PAQ):=eP neqQ,
e(PvQ):=ePveqQ.

Given a predicate (or a set of predicates) P, BY(P) de-
notes the closure under all predicate generators, N3 (P)
denotes the closure under 0, < and —, and B(P) denotes
the Boolean closure.

Since the predicate closure corresponds to closing for-
mulas in modal logic S4 (see [3]), we have chosen the
corresponding modal operators O and < for universal and
existential quantifications.
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It is obvious that the usual propositional laws hold for
the Boolean combinations. The proof of the following sim-
ple laws is left to the reader:

Lemma 2.2 (Simplification rules). For all predicates P, Q :

—OP =0O-P,

—OP =<o=P,

OooP =0OP,

OOP =CP,
O(PvQ)y=0PVvOQ,
OPAQ)=0PAOQ,
av =<0 =0,
OT=0T=T,

OP C P COP.

OO A WN =

The predicates | := <OV, ff:=—], 1:=<1, and |} :=
—4 are called may-convergence, must-divergence, strong
may-divergence, and should-convergence, respectively. Note
that = -OV =0-V, 4 =<0~V =-0¢0V, and | =
ooVv.

Since > is transitive and sV implies that s is irre-
ducible, we obtain:

Lemma 2.3. The set of predicates {|, 1, 1}, |} is closed w.r.t.
negation.Also y C |, t1 St VCl,and [ v+ =T.

The picture in Fig. 1 shows the complete set of ex-
pressions as a set diagram and a Hasse diagram (w.r.t. the
C-ordering)

Theorem 2.4. NS (}) ={{, 1, ™ |}.

Proof. This follows easily by induction and using Lem-
mas 2.3 and 2.2, and the remarks above. O

Theorem 2.5. B3(\) = {2, |, &, . b, L AN, UV, T

Proof. This is shown by induction on the construction of
predicates. Lemmas 2.2, 2.3 and Theorem 2.4 show that
the claim holds for the constructions —, v, A, and for O-
construction with the exception of O(y A1) and O Vv ).
It is sufficient to check the O-construction. Lemma 2.2 and
the proof of Theorem 2.4 show O] A 0% = { A ft =¢. For
o v 1), we have ol V1) € | v by Lemma 2.2. Since
el =eal} V) and eft = e} Vv 1), we have proved
oWvm=4ve O

Definition 2.6 (Contextual preorder and equivalence). Given a
set P of predicates and set F of functions f: E — E (the
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