
Information Processing Letters 110 (2010) 232–235

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Closures of may-, should- and must-convergences for contextual
equivalence

Manfred Schmidt-Schauß ∗, David Sabel

FB Informatik und Mathematik, Institut für Informatik, Goethe-Universität, Postfach 11 19 32, D-60054 Frankfurt, Germany

a r t i c l e i n f o

Article history:
Received 19 January 2009
Received in revised form 13 August 2009
Accepted 11 January 2010
Available online 18 January 2010
Communicated by M. Yamashita

Keywords:
Formal semantics
Programming calculi
Program correctness

1. Introduction

For analyzing the semantics of non-deterministic and/or
concurrent programming languages, there is an increas-
ing use of combinations of may-, should-, and must-con-
vergence predicates in connection with contextual equiv-
alence. For deterministic calculi (for instance [1,9,5,10]),
Morris’ contextual equivalence based on termination, i.e.
on may-convergence appears to be sufficient, where may-
convergence means: e↓ ⇔ ∃v : e

∗→ v where v is a value,
and where two program expressions s, t are contextually
equivalent, if P [s]↓ ⇔ P [t]↓ for every program context P .

For non-deterministic program calculi, may-convergence
alone is arguably insufficient, since, e.g., the programs 0
and (choice 0⊥) cannot be distinguished, and since un-
der may-convergence alone, simple choice and bottom-
avoiding amb cannot be distinguished. There are investi-
gations using the combination of may-convergence and
must-convergence (must-testing equivalence) (see [4,6])
and others based on the combination of may- and should-
convergences (should-testing equivalence); see e.g. [2,12,8,

* Corresponding author.
E-mail addresses: schauss@cs.uni-frankfurt.de (M. Schmidt-Schauß),

sabel@cs.uni-frankfurt.de (D. Sabel).

11]. Must-convergence of an expression e holds, denoted
e � , if there are no infinite reduction sequences starting
from e, and should-convergence of e holds, denoted e⇓,
if every reduct of e is may-convergent (denoted �↓ in
this paper). Simplicity of the definition is the advantage
of must-testing equivalence whereas the invariance of the
contextual equivalence under the restriction to fair reduc-
tion sequences is an advantage of should-testing equiv-
alence (see e.g. [2,12]). Should- and must-convergences
have a different view on weakly divergent expressions
where e is weakly divergent (see [7]) if it reduces infinitely
but never looses the possibility to terminate successfully.
A weakly divergent expression e is should-convergent, but
not must-convergent.

As a consequence, should-testing equivalence is insen-
sitive w.r.t. weak divergences, and on the other hand must-
testing equivalence identifies weakly divergent expressions
with expressions that may reduce to an error (which
strongly diverges). Thus, it may also be reasonable to ar-
gue that all three convergences should be combined.

The modal–logical construction of should-convergence
gives rise to the question, whether there are further such
constructions resulting in new test predicates and corre-
sponding contextual equivalences. We answer this question
by the following results: Starting with ↓, and generat-
ing further convergence predicates using �,�,∨,∧, and

0020-0190/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.01.001

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:schauss@cs.uni-frankfurt.de
mailto:sabel@cs.uni-frankfurt.de
http://dx.doi.org/10.1016/j.ipl.2010.01.001


M. Schmidt-Schauß, D. Sabel / Information Processing Letters 110 (2010) 232–235 233

Fig. 1.

¬ leads to 8 convergence predicates, but w.r.t. contextual
equivalence there is no change: only should-testing equiv-
alence can be defined (Main Theorem 2.8). The second
result (Theorem 3.9) is that starting with � , using the
same generators, an infinite family of convergence predi-
cates will be generated, including ↓ and ⇓, and in general
an infinite family of contextual equivalences.

2. Should- and must-testings

The triple (E, V ,→) is called a reduction structure, pro-
vided V ⊆ E �= ∅, → ⊆ E × E , and e → e′ ⇒ e /∈ V . The

reflexive transitive closure of → is denoted as
∗→. The idea

is that E is the set of expressions of a programming calcu-
lus, → the small-step reduction relation, and V the (irre-
ducible) values, i.e. successful outcomes of reductions. Note
that there may be irreducible elements e ∈ E with e /∈ V ,
where e ∈ E is called irreducible, iff there is no e′ ∈ E with
e → e′ . We will analyze unary predicates over E , which
are always written in postfix. The first predicate is eV ,
which holds iff e ∈ V . Note that (eV ∧ e

∗→ e′) implies that
e = e′ . This predicate, however, will not be used for obser-
vations. We will also use the predicates � and ∅, where
e� is always true, and e∅ is always false. For predicates
P , Q we write P ⊆ Q if e P ⇒ e Q for all reduction struc-
tures (E, V ,→) and for all e ∈ E , and P = Q iff P ⊆ Q and
Q ⊆ P . We write P �= Q , iff for some reduction structure
(E, V ,→) and some e ∈ E , e P �= e Q . The notation P ⊂ Q
means that P ⊆ Q but P �= Q .

Definition 2.1. We define the following predicate-genera-
tors: Given predicates P , Q , the following new predicates
can be defined:

e(�P ) := ∃e′ : e
∗→ e′ ∧ e′ P ,

e(�P ) := ∀e′ : e
∗→ e′ ⇒ e′ P ,

e(¬P ) := ¬e P ,

e(P ∧ Q ) := e P ∧ e Q ,

e(P ∨ Q ) := e P ∨ e Q .

Given a predicate (or a set of predicates) P , B��(P ) de-
notes the closure under all predicate generators, N��(P )

denotes the closure under �,� and ¬, and B(P ) denotes
the Boolean closure.

Since the predicate closure corresponds to closing for-
mulas in modal logic S4 (see [3]), we have chosen the
corresponding modal operators � and � for universal and
existential quantifications.

It is obvious that the usual propositional laws hold for
the Boolean combinations. The proof of the following sim-
ple laws is left to the reader:

Lemma 2.2 (Simplification rules). For all predicates P , Q :

1. ¬�P = �¬P ,
2. ¬�P = �¬P ,
3. ��P = �P ,
4. ��P = �P ,
5. �(P ∨ Q ) = �P ∨ �Q ,
6. �(P ∧ Q ) = �P ∧ �Q ,
7. �∅ = �∅ = ∅,
8. �� = �� = �,
9. �P ⊆ P ⊆ �P .

The predicates ↓ := �V , ⇑ := ¬↓, ↑ := �⇑, and ⇓ :=
¬↑ are called may-convergence, must-divergence, strong
may-divergence, and should-convergence, respectively. Note
that ⇑ = ¬�V = �¬V , ↑ = ��¬V = ¬��V , and ⇓ =��V .

Since
∗→ is transitive and sV implies that s is irre-

ducible, we obtain:

Lemma 2.3. The set of predicates {↓,↑,⇑,⇓} is closed w.r.t.
negation. Also ⇓ ⊆ ↓, ⇑ ⊆ ↑, V ⊆ ⇓, and ↓ ∨ ↑ = �.

The picture in Fig. 1 shows the complete set of ex-
pressions as a set diagram and a Hasse diagram (w.r.t. the
⊆-ordering)

Theorem 2.4. N��(↓) = {↓,↑,⇑,⇓}.

Proof. This follows easily by induction and using Lem-
mas 2.3 and 2.2, and the remarks above. �
Theorem 2.5. B��(↓) = {∅,↓,↑,⇑,⇓,↓ ∧ ↑,⇓ ∨ ⇑,�}.

Proof. This is shown by induction on the construction of
predicates. Lemmas 2.2, 2.3 and Theorem 2.4 show that
the claim holds for the constructions ¬,∨,∧, and for �-
construction with the exception of �(↓∧↑) and �(⇓∨⇑).
It is sufficient to check the �-construction. Lemma 2.2 and
the proof of Theorem 2.4 show �↓ ∧ �↑ = ⇓ ∧ ⇑ = ∅. For�(⇓ ∨ ⇑), we have �(⇓ ∨ ⇑) ⊆ ⇓ ∨ ⇑ by Lemma 2.2. Since
e⇓ ⇒ e�(⇓ ∨ ⇑) and e⇑ ⇒ e�(⇓ ∨ ⇑), we have proved�(⇓ ∨ ⇑) = ⇓ ∨ ⇑. �
Definition 2.6 (Contextual preorder and equivalence). Given a
set P of predicates and set F of functions f : E → E (the



Download	English	Version:

https://daneshyari.com/en/article/428667

Download	Persian	Version:

https://daneshyari.com/article/428667

Daneshyari.com

https://daneshyari.com/en/article/428667
https://daneshyari.com/article/428667
https://daneshyari.com/

