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The textbook method for converting a first-order logic formula to prenex normal form 
potentially leads to an exponential growth of the formula size, if the formula is allowed to 
use all of the classical logical connectives ∧, ∨, →, ↔, ¬. This note presents a short proof 
which shows that the conversion is possible with polynomial growth of the formula size.
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1. Introduction

In algorithmic applications of logic, it is often help-
ful to assume that logical sentences have a special form, 
where all quantifiers occur in front of a formula which 
does not contain any further quantifiers. Formulae of this 
kind are called prenex normal form (pnf) formulae. The 
usual textbook proof (cf. e.g. [2,3]) which shows that for 
each formula there is an equivalent pnf-formula leads to 
a simple algorithm. The formula constructed by this al-
gorithm has the same size as the input formula if the 
input formula contains only the boolean connectives ∧, 
∨, ¬. However, classically, first-order sentences are often 
allowed to contain further connectives, in particular the 
implication → and the bi-implication ↔. In this case, 
it is necessary to eliminate the further connectives us-
ing their definitions in terms of ∧, ∨, ¬ before feeding 
the formula to the algorithm. Doing this naïvely for the 
bi-implication, i.e. ϕ1 ↔ ϕ2 is replaced by (ϕ1 ∧ ϕ2) ∨
(¬ϕ1 ∧¬ϕ2), can lead to an exponential growth of the for-
mula.

In the literature on computational logic, different re-
actions to this exponential growth can be encountered. 
Roughly speaking, it seems that either the exponential 
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growth is simply accepted, or the admissible logical con-
nectives are restricted, or all formulae are simply assumed 
to be in pnf. This situation seems rather unsatisfactory. 
Neither discussions with other researchers in computa-
tional logic nor a search of the literature answered the 
author’s question whether the exponential growth is really 
necessary. It is the goal of this note to present a sim-
ple proof that it is indeed possible to efficiently convert 
formulae to pnf without restricting the admissible logical 
connectives. More precisely, we prove the following theo-
rem.

Theorem 1. Each first-order sentence ϕ over the base B2 of all 
binary boolean connectives is equivalent to a sentence ϕ̃ over 
the base {∧, ∨, ¬} of size

‖ϕ̃‖ ≤ 4‖ϕ‖3.5.

1.1. Notation

We assume only basic knowledge of first-order logic 
(see e.g. [2]). We continue with some general definitions 
which apply to both propositional formulae and to for-
mulae of first-order logic. Let ϕ be such a logical for-
mula. For a set B of boolean connectives, we say that 
ϕ is over the base B if all boolean connectives occurring 
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in ϕ belong to B . The syntax tree T (ϕ) of ϕ is defined 
as usual. We let �(ϕ) denote the number of leaves of 
T (ϕ). That is, if ϕ is a propositional formula, then �(ϕ)

counts the number of occurrences of variables in ϕ , and 
if ϕ is a first-order formula, then �(ϕ) counts the num-
ber of occurrences of atomic subformulae. The depth of ϕ
is the depth of T (ϕ), i.e. the maximal number of edges 
on a directed path from the root to a leaf, and is de-
noted by depth(ϕ). The quantifier-rank of ϕ , written qr(ϕ), 
is the maximum number of quantifiers occurring on any 
directed path of T (ϕ). We define the size ‖ϕ‖ of ϕ as 
the number of nodes of T (ϕ). Up to a constant factor 
(which, if ϕ is a first-order formula, depends on the sig-
nature of ϕ), ‖ϕ‖ is the same as the length of ϕ as a 
word.

2. Reducing the base of first-order formulae

2.1. Quantifier-free formulae

It is known that propositional logic formulae can be 
balanced, e.g. there is a constant k such that each propo-
sitional formula ϕ over the base B = {∧, ∨, ¬} is equiva-
lent to a formula ϕ̃ over the same base with depth(ϕ̃) ≤
k log(�(ϕ)). (Here and throughout this note, log refers to 
the logarithm with base 2.) This result is usually attributed 
to Spira [5], but it has been proved independently sev-
eral times; see [4] for an overview. The very same argu-
ment can be used to obtain a formula ϕ̃ over the base 
{∧, ∨, ¬} if the original formula ϕ is over the base B2
of all binary boolean connectives. In particular, ‖ϕ̃‖ grows 
only polynomially, because T (ϕ) is a binary tree and hence 
‖ϕ̃‖ ≤ 2k log(�(ϕ))+1 = 2�(ϕ)k .

Extending this result to first-order formulae would 
achieve our goal: we would first convert a first-order for-
mula over the base B2 to the base {∧, ∨, ¬} and then we 
would use the standard algorithm to convert the result-
ing formula to pnf without further growth of the formula. 
Unfortunately, since the first-order quantifier-rank hierar-
chy is strict, it is impossible to reduce the depth of general 
first-order formulae in a similar way: consider the first-
order sentence ϕn := ∃x1 . . .∃xn

∧
1≤i< j≤n ¬(xi = x j) with 

�(ϕn) = n(n−1)
2 which states that there exist at least n dis-

tinct elements in a structure over empty the signature; 
it is well-known that each sentence ϕ̃n that is equiva-
lent to ϕn must have quantifier-rank at least n and hence 
depth(ϕ̃n) ≥ n. Nevertheless, we can use the result for 
propositional formulae to achieve our goal. First we note 
that the result about the balancing of propositional formu-
lae translates to the following statement about first-order 
formulae.

Lemma 2. Each quantifier-free first-order formula ϕ over the 
base B2 is equivalent to a formula ϕ̃ over the base {∧, ∨, ¬}
with depth(ϕ̃) ≤ 2 log 3

2
(�(ϕ)) + 1.

We could consider a quantifier-free first-order formula 
as a propositional logic formula and derive Lemma 2 from 
the balancing result for propositional formulae. To keep 
this note self-contained, we prefer to present its nice and 

short proof here. Our presentation borrows from [1]. Be-
low, we write ϕ ≡ ψ if ϕ and ψ are semantically equiva-
lent.

Proof. We proceed by induction on � := �(ϕ). If � = 1, let 
α be the sole atomic formula occurring in ϕ . By remov-
ing double negations, we see that ϕ is either equivalent to 
ϕ̃ := α or to ϕ̃ := ¬α. In both cases, depth(ϕ̃) ≤ 1.

If � ≥ 2, then ϕ contains a subformula ψ with � �
3 � ≤

�(ψ) ≤ 
 2�
3 �. To see why this is true, consider a subformula 

of ψ with �(ψ) ≥ � �
3 � of minimal size. Towards a con-

tradiction, suppose that �(ψ) ≥ 
 2�
3 � + 1 ≥ � 2�

3 � ≥ 2. Then 
ψ is not atomic and it has either one or two immediate 
subformulae, i.e. subformulae corresponding to children of 
the root of T (ψ). For one such subformula ψ ′ , we have 
�(ψ ′) ≥ � �

3 �—a contradiction to the minimality of ψ .
Let ϕtrue and ϕfalse be the formulae obtained from ϕ

by replacing an occurrence of the subformula ψ by atomic 
formulae true and false with the obvious meaning, respec-
tively. Observe that

ϕ ≡ (ψ ∧ ϕtrue) ∨ (¬ψ ∧ ϕfalse).

We have removed at least � �
3 � ≥ 1 atoms, but introduced 

one new true- or false-atom. These new atoms can be 
eliminated, since e.g. (χ ∧ true) ≡ χ and similar equiva-
lences hold for all connectives. For the modified formulae, 
�(ϕtrue), �(ϕfalse) ≤ � − � �

3 � ≤ 
 2�
3 �. Now we apply the in-

duction hypothesis to construct formulae ϕ̃true, ϕ̃false and 
ψ̃ , ˜(¬ψ). We let

ϕ̃ := (ψ̃ ∧ ϕ̃true) ∨ ( ˜(¬ψ) ∧ ϕ̃false).

Clearly, ϕ̃ is a formula over the base {∧, ∨, ¬} and ϕ̃ ≡ ϕ . 
Furthermore, we have depth(ϕ̃true), depth(ϕ̃false), depth(ψ̃),

depth( ˜(¬ψ)) ≤ 2 log 3
2
(
 2�

3 �) + 1. Hence,

depth(ϕ̃) ≤ max{depth(ϕ̃true),depth(ϕ̃false),

depth(ψ̃),depth( ˜(¬ψ))} + 2

≤ 2 log 3
2
( 2�

3 ) + 3

= 2(log 3
2
(�) − 1) + 3 = 2 log 3

2
(�) + 1. �

2.2. Formulae with quantifiers

As observed above, we cannot hope for a similar depth 
reduction as in Lemma 2 for first-order formulae which 
contain quantifiers. To achieve our goal, we do not focus 
on the depth, but rather on the size of the formula; the 
depth of the formula in our construction below may even 
grow. Intuitively, the idea of the proof below is to perform 
the balancing “between the quantifiers”.

Let q(ϕ) denote the number of nodes of T (ϕ) that are 
labeled by a quantifier (i.e. the number of occurrences of 
quantifiers in ϕ , not the quantifier-rank), and let s(ϕ) :=
�(ϕ) + q(ϕ).

Theorem 3. Each first-order formula ϕ over the base B2 is 
equivalent to a formula ϕ̃ over the base {∧, ∨, ¬} such that 
‖ϕ̃‖ ≤ 4s(ϕ)3.5 and depth(ϕ̃) ≤ 3.5(qr(ϕ) +1)(log(�(ϕ)) +1).
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