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For two positive integers n and m with n > m, the Gn−m preclusion node (resp. link) 
number Fm(Gn) (resp. fm(Gn)) of an n-dimensional interconnection network Gn is the 
minimum number of nodes (resp. links), if any, whose deletion results in a network with 
no subnetwork isomorphic to Gn−m . The n-dimensional bubble-sort network Bn is one of 
the most attractive interconnection networks for multiprocessor systems. In this paper, we 
prove that F2(Bn) = f2(Bn) = n(n − 1) for n ≥ 6.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The interconnection network plays an important role in 
large-scale multiprocessor systems, and is usually repre-
sented by an undirected graph G = (V , E), where nodes 
in V correspond to processors, and edges in E correspond 
to communication links. In a real system, failures of com-
ponents are inevitable. Thus, fault tolerance of intercon-
nection networks has become an important issue. Fault 
tolerance of interconnection networks is usually measured 
by how much of the network structure is preserved in the 
presence of a given number of component failures. Obvi-
ously, in the presence of component failures, the entire 
interconnection network is not available. Under this con-
sideration, Becker and Simon [3] proposed a problem: if 
the network contained a given number of faulty processors 
or links, then what the maximum number of dimensions 
that would be lost is. About ten years later, Latifi [9] pro-
posed a similar question that how large of a subnetwork is 
still available in the network in the presence of component 
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failures. Motivated by the above problems and the concept 
of matching preclusion [5,6], we presented the following:

Let Gn be an n-dimensional recursive interconnection 
network with n ≥ 2. Given an integer 2 ≤ j ≤ n, let Gi be 
the subnetwork, smaller network but with the same topo-
logical properties as the original one, of G j for 1 ≤ i ≤
j − 1. Given a positive integer m with m < n, the Gn−m

preclusion node number Fm(Gn) (resp. Gn−m preclusion link 
number fm(Gn)) of Gn is the minimum number of nodes 
(resp. links), if any, whose deletion results in a network 
with no subnetwork isomorphic to Gn−m .

Becker and Simon [3] studied the subnetwork preclu-
sion problem in the hypercube network Hn and deter-
mined fm(Hn) for some m’s. Latifi [9] investigated the 
problem in the star network Sn and mainly determined 
f2(Sn) when n is prime. Later, Latifi et al. [10] proved 
that f1(Sn) = n + 2 and gave an upper bound on f2(Sn)

for n ≥ 4, with complexity of O (n3). Walker and Latifi 
[12] improved the bound on fm(Sn) and gave a relation-
ship between fm(Sn) and Fm(Sn). Recently, Wang and Yang 
[13] explored the problem in the bubble-sort network Bn . 
They determined F1(Bn) and f1(Bn), and presented a 
nontrivial upper bound on F2(Bn) and f2(Bn). Subse-
quently, Wang et al. [14] investigated the problem in k-ary 
n-cubes and determined the k-ary (n − 1)-cube preclusion 
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Fig. 1. The bubble-sort graphs B2, B3 and B4.

node number and gave a nontrivial upper bound on k-ary 
(n − 2)-cube preclusion node number of k-ary n-cubes. 
Wang and Feng [15] investigated the problem in the ar-
rangement graph An,k , which is a generalized network 
of Sn . They derived the An−1,k−1 preclusion node num-
ber, and gave a nontrivial upper bound on the An−m,k−m
preclusion node number of An,k for m ≥ 2.

The bubble-sort graph Bn is an attractive interconnec-
tion network with many good properties such as node-
symmetric, (n − 1)-regular and bipartite [1,2,7,8,11–13,16]. 
In [13], one of the main results is shown as follows.

Theorem 1. (See [13].) Let Bn be an n-dimensional bubble-sort 
graph. Then n(n −1) ≤ F2(Bn) ≤ f2(Bn) ≤ n(2n −3) for n ≥ 6.

In this paper, we will improve the above result and 
prove that F2(Bn) = f2(Bn) = n(n − 1) for n ≥ 6.

2. Preliminaries

To be more self sufficient and self contained, we re-
iterate the terminology and notation used in [13]. For 
the graph-theoretical terminology and notation not defined 
here we follow [4]. Let N0 = ∅ and let Nn be the set 
{1, 2, . . . , n} for an arbitrary integer n ≥ 1.

The bubble-sort graph, Bn , n ≥ 1, is an undirected graph 
consisting of n! nodes each of which has the form x =
x1x2 . . . xn , where 1 ≤ xi ≤ n and xi �= x j for distinct 1 ≤
i, j ≤ n. Two nodes are jointed with an i-link if and only 
if the label of one can be obtained from the label of the 
other by swapping the ith digit and the (i + 1)th digit 
where i ∈ Nn−1. Bn has a recursive structure. More specif-
ically, Bn contains n disjoint sub-bubble-sort graphs Bn−1. 
There are exactly two ways to partition Bn into n disjoint 
Bn−1’s when n ≥ 3. This is done by removing all 1-links 
(or (n − 1)-links) in Bn . The bubble-sort graphs B2, B3 and 
B4 are shown in Fig. 1.

Given an integer n ≥ 1, let �n be the symbol set 
{0, 1, . . . , n, X}, where X denotes a don’t care symbol. 
Let k ∈ {0, 1, . . . , n − 1} and let a1, a2, . . . , ak be pair-
wise distinct symbols in Nn , where if k = 0 no symbol 
is chosen in Nn . For any integer 0 ≤ i ≤ k, let Mk,i =
{a1a2 . . .aib1b2 . . .bn−kai+1ai+2 . . .ak : b1, b2, . . . , bn−k ∈
Nn \ {a1, a2, . . . ,ak} are pairwise distinct}, where a1a2 . . .ai
is an empty string if i = 0, and ai+1ai+2 . . .ak is an 
empty string if i = k. For example, M0,0 = {b1b2 . . .bn :

b1, b2, . . . , bn ∈ Nn are pairwise distinct}. Obviously, the 
subgraph of Bn induced by Mk,i is isomorphic to Bn−k . 
For the convenience of representation, for any integers i, k
with 0 ≤ k ≤ n − 1 and 0 ≤ i ≤ k, we denote by an n-length 
string a1a2 . . .ai Xn−kai+1ai+2 . . .ak the subgraph induced 
by Mk,i in Bn . Note that a1a2 . . .ai Xn−kai+1ai+2 . . .ak is 
just Xn−ka1a2 . . .ak when i = 0, and a1a2 . . .ai Xn−kai+1
ai+2 . . .ak is just a1a2 . . .ak Xn−k when i = k. For exam-
ple, X31 and 1X3 denote the B3’s induced by {2341, 2431,

4231, 4321, 3421, 3241} and {1234, 1324, 1342, 1432, 1423,

1234}, respectively. Note that for any integer 0 ≤ i ≤
n −2, a1a2 . . .ai X Xai+1ai+2 . . .an−2 denotes a B2 which has 
exactly one link (a1a2 . . .aib1b2ai+1ai+2 . . .an−2, a1a2 . . .

aib2b1ai+1ai+2 . . .an−2), where {b1, b2} = Nn \ {a1, a2, . . . ,
an−2}. We shall not distinguish between the graph B2
and its link. Therefore, we often refer to the graph 
a1a2 . . .ai X Xai+1ai+2 . . .an−2 as its link (a1a2 . . .aib1b2ai+1
ai+2 . . .an−2, a1a2 . . .aib2b1ai+1ai+2 . . .an−2).

In fact, given an integer k ∈ {0, 1, . . . , n − 1}, a Bn−k
in Bn can be uniquely labeled by a string of symbols in 
�n , i.e., a1a2 . . .ai Xn−kai+1ai+2 . . .ak , where a1, a2, . . . , ak
are pairwise distinct symbols in Nn and i ∈ {0, 1, . . . , k}. 
The result has been proved in [13].

Two Bn−k ’s in Bn are distinct if their node sets are 
different and disjoint if they have no common node. The 
following will be used in the proof of Lemma 2 in Sec-
tion 3.

Lemma 1. (See [13].) Given two integers n ≥ 1 and k ∈
{0, 1, . . . , n − 1}, there are (k + 1)!(n

k

)
distinct Bn−k’s in Bn, 

where the term 
(n

k

) = n!
k!(n−k)! denotes the number of ways to 

pick k objects out of n objects.

3. The Bn−2 preclusion number of Bn

In this section, we are interested in exploring the Bn−2
preclusion problem in Bn and we will prove that F2(Bn) =
f2(Bn) = n(n −1) for n ≥ 6. Let us begin with an important 
lemma.

Lemma 2. Given an integer n ≥ 6, let Q n = {(x, y) : x, y ∈
Nn and x �= y}. If there is a bijection �n from Q n to itself such 
that {x1, x2} ∩ {y1, y2} = ∅ and Mn = Q n, where (y1, y2) =
�n(x1, x2) and Mn = {(x1, y2) : (y1, y2) = �n(x1, x2)}, then 
F2(Bn) = f2(Bn) = n(n − 1).

Proof. Theorem 1 implies that f2(Bn) ≥ F2(Bn) ≥ n(n − 1). 
In the following, it suffices to prove that f2(Bn) ≤ n(n − 1).

Lemma 1 implies that there are (2 + 1)!(n
2

) =
3n(n − 1) distinct Bn−2’s in Bn , which can be divided into 
three disjoint sets A0, A1 and A2, where

A0 = {Xn−2a1a2 : a1,a2 ∈ Nn and a1 �= a2},
A1 = {a1 Xn−2a2 : a1,a2 ∈ Nn and a1 �= a2},
A2 = {a1a2 Xn−2 : a1,a2 ∈ Nn and a1 �= a2}.

Since there is a bijection �n from Q n to itself such 
that {x1, x2} ∩{y1, y2} = ∅, where (y1, y2) = �n(x1, x2), the 
three Bn−2’s (i.e., Xn−2 y1 y2 in A0, x1 Xn−2 y2 in A1 and 
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