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We study minimum spanning cactus and bottleneck spanning cactus problems with 
τ -triangle inequality. Both problems are NP-Complete. No approximation algorithms are 
known for these problems. We present τ approximation algorithm for the first and 2τ − 1
approximation algorithm for the second problem.
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1. Introduction

A graph H = (V , E H ) is a partial cactus if every edge of 
the graph is contained in at most one cycle. A partial cac-
tus is called a cactus if every edge is contained in exactly 
one cycle.

For a graph G = (V , E), a subgraph H = (V , E H ) is 
called a spanning cactus if H is a cactus. If w(e) is the 
weight of an edge e of G then 

∑
e∈E H

w(e) is the weight 
of the spanning cactus H , say w(H). Minimum Spanning 
Cactus (MSC) Problem is to compute a spanning cactus of 
minimum weight.

Spanning cactus of a graph may or may not exist. For 
example, the graph in Fig. 1 has no spanning cactus.

Bottleneck weight of a graph G = (V , E), denoted by 
b(G), is defined as max{w(e)|e ∈ E}. For a graph G =
(V , E), Bottleneck Spanning Cactus (BSC) problem is to find 
a spanning cactus H = (V , E H ) with minimum b(H).

Cactus is a very simple graph. There are many appli-
cations in the areas of traffic estimation [12,18], genome 
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comparison [14], representing cuts of a graph [6,7,9] that 
use this simple structure.

Minimum spanning cactus problem is NP-Complete, 
both for directed and undirected graphs [15,10]. The prob-
lem was studied for design of approximation algorithms. 
It was shown that designing an approximation algorithm 
for MSC problem has approximation hardness same as the 
traveling salesman problem, both for directed and undi-
rected graphs, if the edge weights satisfy the triangle in-
equality [10,15]. However, this equivalence with the trav-
eling salesman problem does not hold if the edge weights 
do not satisfy the triangle inequality [2]. Also, it was noted 
in [10] that the approximation equivalence to the trav-
eling salesman problem does not remain true if the tri-
angle inequality is replaced by τ -triangle inequality. This 
means, it still remains open to design an approximation 
algorithm for MSC with τ -triangle inequality. In this pa-
per, we present a simple approximation algorithm for MSC 
with τ -triangle inequality with a relative error bound τ .

Next we study the BSC problem. We establish the fact 
that the problem is NP-Complete. Further, we show that 
approximation algorithm for MSC can be modified to get 
an approximation algorithm for the BSC problem with rel-
ative error 2τ − 1.
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Fig. 1. A graph having no spanning cactus.

In Section 2, we present the approximation algorithm 
for MSC with τ -triangle inequality. Section 3 describes the 
approximation algorithm for BSC with τ -triangle inequal-
ity. Section 4 contains conclusion and scope for future 
work.

2. Approximate minimum spanning cactus

As in the case of traveling salesman problem, we as-
sume, the input graph is complete and weighted. Weights 
satisfy τ -triangle inequality. This means that for three ver-
tices x, y, z, w((x, y)) ≤ τ [w(x, z) + w(z, y)], for some con-
stant τ ≥ 1. Output of the algorithm is a spanning cactus 
H of G such that w(H) ≤ (1 + τ )w(H∗), where H∗ is the 
minimum spanning cactus of G .

2.1. Lower bound for MSC

Any constant bound approximation algorithm design 
needs to establish a good lower bound. For many prob-
lems, it has been found that weight of minimum spanning 
tree directly serves as lower bound [5,8,16,17]. We prove 
that a lower bound for the solution to MSC problem can 
be obtained from the minimum spanning tree.

Let G = (V , E) be the complete graph with weights sat-
isfying τ -triangle inequality. Also, let H∗ = (V , E ′) be its
minimum spanning cactus and T ∗ be a minimum spanning 
tree of G . There are efficient polynomial time algorithms to 
compute T ∗ [11,13].

Minimum spanning cactus H∗ = (V , E ′) of G = (V , E)

consists of a set of cycles, say C1, C2, ...., Ck . Let e1, e2,

...., ek be the maximum weight edges in the cycles C1, C2,

...., Ck , respectively. Deletion of these edges from H∗ leaves 
a spanning tree of G . Therefore, w(H∗ − {e1, e2, ...., ek}) ≥
weight of the minimum spanning tree = w(T ∗).

Therefore, w(H∗) ≥ w(T ∗) + total weight of {e1, e2,

...., ek} ≥ w(T ∗) + w(ei), where ei is the maximum weight-
ed edge in {e1, e2, . . . , ek} ≥ w(T ∗) + w(emax), emax is the 
maximum weighted edge in T ∗ = w(T ∗) + b(T ∗).

⇒ w(H∗) ≥ w(T ∗) + b(T ∗) (1)

Therefore,

Theorem 1. Weight of the minimum spanning tree plus bottle-
neck of the minimum spanning tree is a lower bound for the 
weight of minimum spanning cactus.

2.2. The approximation algorithm

We are now in a position to describe the algorithm. 
The algorithm first constructs a minimum spanning tree 

then adds some chords in it to get the approximate cac-
tus. Chords are added in such a way that only cycles of 
length three are produced, except possibly one four cycle. 
Each three cycle contains two adjacent tree edges and one 
chord. We prove, by τ -triangle inequality that the weight 
of this chord is not too much. The four cycle, if included, 
contains two tree edges and two chords. In this case also, 
as in the case of three cycle, we prove that the weight of 
the two chords are within reasonable bounds. Steps of the 
algorithm are shown in Algorithm Approx-MSC.

Algorithm Approx-MSC

1 C = �

2 Construct T ∗ , an MST of G .
3 Make a search on T ∗ to transform it to a rooted or-

dered tree with fixed root.
4 while |T ∗| ≥ 4 do //T ∗ contains more than three 

edges//

{p = leftmost leaf
r = parent of p
q = next sibling of p,

if it exists else parent(parent(p))
C = C ∪ {(r, p), (r,q), (p,q)}
T ∗ = T ∗ − {(r, p), (r,q), (p,q)}
}

5 If |T ∗| = 2,
C = C ∪ {(r, p), (r, q), (p, q)}, where (r, p), (r, q) are 
two tree edges.

6 If |T ∗| = 3,
C = C ∪ {(r, p), (r, q), (p, s), (s, q)}, where r is the only 
non-leaf vertex and p , s are two leaves.

7 return C

2.3. Correctness

Lemma 1. At the end of execution, Approx-MSC returns a span-
ning cactus.

Proof. Algorithm constructs an MST T ∗ at Step 2. At 
Step 4, the algorithm iteratively takes two adjacent edges 
out of T ∗ , constructs a cycle of length three which consists 
of these two tree edges and a unique chord, adds this cycle 
into the cactus. It continues the process until T ∗ contains 
at most three edges. If T ∗ contains only two edges then 
Step 5 is executed and one more cycle of length three is 
added to the cactus. On the other hand, if T ∗ contains 
three edges then a cycle of length four is added to C . At 
the end of Step 6, C contains a set of cycles. The graph in-
duced by C is obviously connected; every edge is present 
in exactly one cycle and it spans over all the vertices of 
the original graph. Therefore, C provides a spanning cactus 
of G . �

Next we obtain an upper bound on the weight of each 
three cycle and four cycle in the cactus produced. Let C3

be a three cycle in the cactus. Then we prove that

Lemma 2. w(C3) ≤ (1 + τ ) × [w(e1) + w(e′
1)] and b(C3) ≤

2τb(T ∗), where e1 and e′
1 are the spanning tree edges in C3.
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