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This paper addresses a hop-constrained graph design optimization problem which is 
related to efficiency and reliability issues of communication protocols in wireless networks. 
In particular, we study the problem of adding a minimum size set of points to a given 
unit disk graph in such a way that in the resulting graph any two original points 
have hop-distance at most a given bound D . After having proved the hardness of the 
problem, we propose two different bi-criteria algorithms that, conjunctively, provide 
logarithmic approximation ratio on both criteria. We remark that our first algorithm, 
while unable to provide any approximation guarantee in the general case, does yield an 
(O (1), O (1))-approximation for a wide set of instances.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study a basic network design problem 
in which we are given a set P of n points in the Euclidean 
plane and a hop-constraint requirement D . The goal is to 
find a minimum cardinality set S of points to be added 
to P so that every pair of nodes in P is connected by a 
path of at most D nodes in P ∪ S at distance at most 1 
from each other. This problem arises in the wireless net-
works setting. We briefly recall that a wireless network 
consists of a set of radio stations connected by wireless 
links such that two stations are connected by a link if 
they are within the transmission range of each other. In 
particular, we are concerned with homogeneous wireless 
networks, in which all stations transmit with the same 
power so determining bidirectional links. The underlying 
graph theoretical model is the unit disk graph.

The hop constraint limits the maximum number of 
links in the communication paths between any pair of 
nodes and, hence, it is closely related to restricting the 
maximum delay transmission time of several fundamental 
communication protocols.

* Corresponding author.

Reliability is a second remarkable issue concerned with 
the hop constraint. Assume that, in a communication net-
work, link faults happen with probability p and that all 
faults occur independently. Then, the probability that a 
multi-hop transmission fails exponentially increases with 
the number of hops.

Summarizing, a fixed bound on the maximum number 
of hops is sometimes a necessary constraint in order to 
achieve fast and reliable communication protocols. For fur-
ther motivations in studying hop-constrained graph design 
problems see [1–5].

There is also a large body of work about the non-
geometric, graph theoretic counterpart of the problem, 
namely, the problem of adding edges to a given graph 
so as to minimize the resulting diameter. This last prob-
lem arises in practical applications like telecommunication 
networks and airplane flight scheduling [6,7], and it re-
ceived a lot of attention in the graph theory community 
(see [8–13]). The state of the art about approximability and 
non-approximability results for the problem can be found 
in [14].

Turning our attention back to the wireless network sce-
nario, this paper is a first step in approaching the problem 
of decreasing the diameter of a geometric graph by adding 
to it as few nodes as possible. After having provided the 
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necessary preliminary definitions in Section 2, we prove 
the hardness of the problem in Section 3. Then, we con-
sider bi-criteria approximation algorithms. In Section 4 we 
exploit a result in [15] to derive a polynomial-time al-
gorithm computing a set S of additional nodes such that 
every pair of nodes in P is connected by a path in P ∪ S
of at most βD nodes at distance at most 1 from each 
other, for some constant β > 1. Furthermore, the num-
ber of added points is a constant factor away from the 
size of a minimal set satisfying the hop constraint D up 
to an additive term of O (n). This implies that, when-
ever the optimal solution requires �(n) points, our algo-
rithm returns an (O (1), O (1))-approximation. As we shall 
discuss in more detail in the paper, such an approxi-
mation is guaranteed for a wide set of instances among 
which we recall instances containing (at least) a pair of 
points far (enough) from each other, or such that the 
unit disk graph induced by P is made up of many con-
nected components. However, we are not able to prove 
that our algorithm performs well when the points are too 
close to each other. For this case, in Section 5 we design 
an (O (log n), O (log n))-approximation algorithm that, as its 
first step, builds from P a graph representing all the solu-
tions of our problem up to constant factors for both the 
number of added points and the diameter value. Then, it 
applies to such graph the algorithm proposed in [16]. Since 
the construction of the graph requires polynomial time 
in the maximum Euclidean distance between any pair of 
points in P , the algorithm runs in polynomial time only for 
sets of points belonging to a small region in R2. However, 
we remark that, when this does not happen, the algorithm 
described in Section 4 does yield a constant approxima-
tion.

2. Preliminaries

Let V be a set of points in R2. The unit disk graph in-
duced by V , denoted as udg(V ), is the undirected graph 
over the node set V such that two nodes u, v ∈ V are ad-
jacent if and only if their Euclidean distance ||uv|| is at 
most 1.

We denote by diam(V ) the diameter of udg(V ) and by 
δ(V ) the maximum Euclidean distance between any pair of 
points in V rounded up to its closest larger integer:

δ(V ) = �max{||uv|| : u, v ∈ P }�.
Needless to say, δ(V ) ≤ diam(V ).

Let P , S ⊂ R
2 be such that P ∩ S = ∅; the P-hop count

between any pair of nodes u, v ∈ P , denoted as hS,P (u, v), 
is the number of edges in any shortest path between u and 
v in udg(P ∪ S). The P-diameter of udg(P ∪ S), denoted 
as diam(P , S), is the maximum P -hop count between all 
pairs of nodes in P :

diam(P , S) = max{hS,P (u, v) : u, v ∈ P }.
The Bounded Diameter with minimum number of Added 

Nodes problem (in short min-BDAN) is then defined as fol-
lows: given a set P of n points in R2 and D ∈ N, we ask 
for a minimum size set S of points in R2 such that the 
P -diameter of udg(P ∪ S) is at most D .

A feasible solution for an instance 〈P , D〉 of min-BDAN

is any set of points S ⊂ R
2 such that the P -diameter of 

udg(P ∪ S) is at most D . Observe that, if δ(P ) > D , no fea-
sible solution exists.

Given a set P of points in R2, a geometric Steiner Tree
of P is a tree T connecting all points in P and constituted 
by line segments; if the intersection point of two line seg-
ments in T is not in P it is called a Steiner point. The cost 
of T , denoted as c(T ), is defined as

c(T ) =
∑

(u,v)∈E(T )

||uv||.

A slightly different cost function associated to a geometric 
Steiner tree T of a set P ⊂ R

2 can be considered, that is, 
its discrete cost cd defined as

cd(T ) =
∑

(u,v)∈T

�||uv||�.

Not surprisingly, if we do not care about the value of the 
P -diameter, there is a strong relation between the size of 
a feasible solution for an instance 〈P , D〉 of min-BDAN and 
the discrete cost of a geometric Steiner tree of P ; this is 
stated in the following lemma.

Lemma 1. For any P ⊂ R
2 , there exists S ⊂ R

2 such that 
udg(P ∪ S) is connected if and only if a geometric Steiner tree 
T of P exists such that cd(T ) = |S| + |P | − 1.

Proof. Let S be a set of points in R2 such that udg(P ∪ S)

is connected and let T = (P ∪ S, ET ) be a spanning tree of 
udg(P ∪ S). Since T is a tree and since �||uv||� = 1 for any 
(u, v) ∈ ET , then

cd(T ) =
∑

(u,v)∈ET

�||uv||� = |P | + |S| − 1.

Conversely, let T be a geometric Steiner tree of P and de-
note as t the number of the Steiner nodes in T and as E T

the set of its edges; from T we compute a set S of nodes 
such that udg(P ∪ S) is connected. Actually, the set S con-
tains all the Steiner nodes in T and, for any edge (u, v)

in T , it contains �||uv||� − 1 points uniformly distributed 
at distance at most 1 onto the edge (u, v). Hence,

|S| = t +
∑

(u,v)∈ET

(�||uv||� − 1)

= t − (|P | + t − 1) +
∑

(u,v)∈ET

�||uv||�

= 1 − |P | + cd(T ). �
3. Hardness

In this section we prove that the decision problem bdan

corresponding to min-BDAN is NP-hard. An instance of
bdan consists of a set of points P ⊂ R

2, and of two inte-
ger values k and D , and asks whether a set S of (at most) 
k points exists such that the P -diameter of udg(P ∪ S) is 
at most D .
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