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Given a complete edge-weighted graph G , we present a polynomial time algorithm to 
compute a degree-four-bounded spanning Eulerian subgraph of 2G that has at most 
1.5 times the weight of an optimal TSP solution of G . Based on this algorithm and a novel 
use of orientations in graphs, we obtain a (3β/4 + 3β2/4)-approximation algorithm for TSP 
with β-relaxed triangle inequality (β-TSP), where β ≥ 1. A graph G is an instance of β-TSP, 
if it is a complete graph with edge weights c: E(G) → Q≥0 that are restricted as follows. 
For each triple of vertices u, v, w ∈ V (G), c({u, v}) ≤ β(c({u, w}) + c({w, v})).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the traveling salesman problem we are given a 
complete edge-weighted graph and we have to find a 
minimum-weight Hamiltonian tour, i.e., a tour that vis-
its each vertex exactly once. This classical problem has 
been studied extensively and in many variations. Most of 
the variations concern restrictions of the weight function. 
One of the most natural restrictions is to assume that the 
weight function is a metric. Intuitively this means that we 
are allowed to take the shortest path to the next vertex to 
visit, even if this means to visit some of the vertices more 
than once.

Despite intensive research for more than 30 years, 
Christofides’ algorithm is still the best known approxima-
tion algorithm for the metric traveling salesman problem 
and its approximation ratio is 1.5 [1]. For similar set-
tings, however, a recent fast development has started. For 
graphic metrics—metrics obtained by taking the lengths of 
the shortest paths in an unweighted graph as weights—
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a sequence of improvements was published within a short 
time frame, with the currently best approximation algo-
rithm of Sebő and Vygen which achieves an approximation 
ratio of 1.4 [2–5].

Instead of restricting the metric, in this paper we 
consider a relaxation. We use a relaxation parameter 
β ≥ 1 and require that the input instance is a com-
plete graph G where the non-negative weight function 
c: E(G) → Q≥0 satisfies the relaxed triangle inequality 
c({u, w}) ≤ β(c({u, v}) + c({v, w})) for any three vertices 
u, v, w ∈ V (G).

For approximation algorithms, the relaxed triangle in-
equality was introduced by Bandelt, Crama, and Spieksma 
[6]. This type of parameterization also provides a suitable 
type of relaxation in the context of stability of approxima-
tion [7] and our result fits into this framework.

The β-relaxed version of metric TSP (β-TSP) was first 
considered by Andreae and Bandelt [8] who presented a 
1.5β2 + 0.5β approximation algorithm. Subsequently An-
dreae improved the result to β + β2 [9]. The next de-
velopment was due to Böckenhauer et al. [7]. They ob-
tained a 1.5β2-approximation algorithm, which is better 
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than the previous algorithms for 1 < β < 2. Bender and 
Chekuri [10] independently obtained a 4β approximation 
algorithm, which is better than the algorithm of Andreae 
for β > 3.

1.1. Results and overview of techniques

We provide an improved approximation algorithm for 
β-TSP.

Theorem 1.1. There is a polynomial time (3β/4 + 3β2/4)-ap-
proximation algorithm for β-TSP.

The approximation ratio of our algorithm outperforms 
the ratios provided by Andreae [9] and by Böckenhauer 
et al. [7] for all values of β . The 4β approximation al-
gorithm of Bender and Chekuri [10] still is better than 
our algorithm for β > 13/3 ≈ 4.33. To obtain our result 
we first use the matroid version by Király et al. [11] of a 
bounded degree spanning tree result of Singh and Lau [12], 
combined with special b-matchings that respect parities 
of vertex degrees. We obtain a degree-4-bounded span-
ning Eulerian subgraph in 2G for any complete graph G
with edge weights c: E(G) → Q such that the weight of 
the computed graph is at most 1.5 times the weight of an 
optimal TSP solution. Finally, we introduce an orientation 
technique that provides a cactus graph with useful proper-
ties such that the weight of shortcuts within the graph is 
restricted when constructing the TSP solution. One key in-
sight is that we obtain two disjoint sets of edges such that 
we have to consider the factor β2 only for the smaller of 
the two sets.

2. Preliminaries

All graphs in this paper are allowed to have multiple 
edges. For convenience of notation, however, we do not 
distinguish between multi-sets and sets. We handle mul-
tiple edges of a graph as separate edges. This way there 
may be cycles of length two. (We define a cycle to be a 
simple cycle, i.e., vertices may not be visited twice.)

Given a graph G , V (G) and E(G) are its set of vertices 
and its set of edges. For a set of edges F ⊆ E(G), we write 
c(F ) as shorthand for 

∑
e∈F c(e). Similarly, for a graph G

we write c(G) as shorthand for c(E(G)). A block of a graph 
G is a maximal two-vertex-connected subgraph.

A b-matching of a graph G is a subgraph G ′ of G with 
possible additional multiplicities of edges where each ver-
tex has a degree of at most b. We identify a b-matching 
with its characteristic vector x of edges, that is, for each 
edge e ∈ E(G), x has an entry xe ∈ N0 and xe ≥ 1 if and 
only if e ∈ E(G ′).

Let G = (V , E) be an undirected graph and let M be 
the V × E incidence matrix of G . Let l ≤ m and a ≤ b be 
integer vectors in NE

0 resp. NV
0 and let Sodd and Seven be 

disjoint subsets of V .
Consider the following constraints that impose restric-

tions on the characteristic vector of the b-matching x ∈ NE
0 .

(i) l ≤ x ≤ m (iii) (Mx)v is odd if v ∈ Sodd

(ii) a ≤ Mx ≤ b (iv) (Mx)v is even if v ∈ Seven (1)

These constraints specify (i) bounds on the multiplicity 
of edges in G , (ii) bounds on the degrees of the vertices 
in G , and (iii, iv) the parities of degrees for specific ver-
tices (since Mx is the vector of vertex degrees).

We slightly abuse notation and, whenever the meaning 
is clear from the context, we associate an integer i with 
the corresponding vector (i, i, . . . , i). Note that for an inte-
ger b′ , (1) specifies a b′-matching if we set l = 0, m = ∞, 
a = 0, b = b′ , and Sodd = Seven = ∅. For our results we need 
specific b-matchings that we will specify by giving values 
to the parameters of (1).

The following theorem is Theorem 36.5 in Schrijver’s 
book [13]. (Here, we use a simplified setting. In the origi-
nal theorem a more general class of graphs can be used.)

Theorem 2.1. (See Edmonds, Johnson [14].) For any c ∈ QE , 
an integer vector x maximizing cT x over (1) can be found in 
strongly polynomial time (if it exists).

Given a graph G , a 1-tree is a subgraph of G composed 
of a spanning tree on V (G) \ {v1} for some v1 ∈ V (G) and 
two edges incident to v1. If G is a complete graph, then 
for each choice of v1 there is a matroid M such that the 
1-trees of G are the bases of M [15]. We are interested in 
1-trees where additionally the vertices have degree restric-
tions.

For a vector b of vertex degrees, a 1-tree T of G is de-
gree b bounded if the degree of each vertex v ∈ V (T ) is 
at most bv . The following theorem follows directly from 
Király et al. [11] who showed a more general result for 
matroids.1 (We run their algorithm for each choice of v1.)

Theorem 2.2. Given a complete graph G with edge weights 
c: E(G) → Q and a vector b of upper bounds on the vertex 
degrees, there is polynomial time algorithm that computes a 
1-tree T in G such that (a) T is degree (b + 1) bounded and 
(b) c(T ) ≤ c(T ′) for all degree b bounded 1-trees T ′ in G.

For our algorithm we need cactus graphs. Here we use 
the following definition of cacti which strictly speaking 
specifies the subclass of 2-edge-connected cacti.

Definition 2.3 (Cactus). A graph G is a cactus if it is 2-edge 
connected and all blocks are cycles, i.e., no two cycles 
share an edge.

Given a graph G , 2G is the graph where each edge of 
G is doubled. A graph G ′ is a spanning Eulerian subgraph of 
2G if V (G) = V (G ′), G ′ is a connected subgraph of 2G , and 
each vertex of G ′ has even degree.

3. The algorithm ALGβ

Before we proceed to the main result, we show an in-
termediate observation. With the preparation in the pre-

1 Note that by guessing two consecutive edges and applying straight-
forward graph modifications, we could also use the predecessor result on 
bounded degree spanning trees [12].
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