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Given a set S of points in the plane, the k-Gabriel graph of S is the geometric graph with 
vertex set S , where pi, p j ∈ S are connected by an edge if and only if the closed disk 
having segment pi p j as diameter contains at most k points of S \ {pi, p j}. We consider 
the following question: What is the minimum value of k such that the k-Gabriel graph of 
every point set S contains a Hamiltonian cycle? For this value, we give an upper bound of 
10 and a lower bound of 2. The best previously known values were 15 and 1, respectively.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let S be a set of n distinct points in the plane. Loosely 
speaking, a proximity graph on S is a graph that attempts to 
capture the relations of proximity among the points in S . 
Usually, one defines a reasonable criterion for two points 
to be considered close to each other, and then the pairs of 
points that satisfy the criterion are connected in the graph. 
The study of proximity graphs has been a popular topic in 
computational geometry, since these graphs not only sat-
isfy interesting theoretical properties, but also have appli-
cations in several fields, such as shape analysis, geographic 
information systems, data mining, computer graphics, or 
graph drawing (see, for example, [3,17]).
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The Delaunay graph and its relatives constitute a promi-
nent family of proximity graphs. In the Delaunay graph
of S , denoted by DG(S), pi, p j ∈ S are connected by an 
edge if and only if there exists a closed disk with pi, p j on 
its boundary that does not contain any point of S \ {pi, p j}
(see [11]). It is well known that if S does not contain three 
collinear or four cocircular points, then DG(S) is a triangu-
lation of S .

Two related proximity graphs are the relative neighbor-
hood graph and the Gabriel graph. In the relative neigh-
borhood graph of S , denoted by RNG(S), pi, p j ∈ S are 
connected by an edge if and only if there does not exist 
any p� ∈ S such that d(pi, p�) < d(pi, p j) and d(p j, p�) <
d(pi, p j), where d(p, q) denotes the Euclidean distance be-
tween p and q (see [21]).

Given two points pi, p j ∈ S , we denote the closed disk 
having segment pi p j as diameter by C-DISC(pi, p j). The 
Gabriel graph of S is the graph in which pi, p j ∈ S are 
connected by an edge if and only if C-DISC(pi, p j) ∩ S =
{pi, p j} (see [16]). We denote the Gabriel graph of S
by GG(S). Notice that RNG(S) ⊆ GG(S) ⊆ DG(S) holds for 
any point set S .
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All of the above graphs are plane, that is, if edges 
are drawn as line segments, then the resulting drawing 
contains no crossings. In the last decades, a number of 
works have been devoted to investigate whether they ful-
fill other desirable graph-theoretic, geometric, or computa-
tional properties. For example, it has been studied whether 
the vertices of these graphs have bounded maximum or 
expected degree [19,12,7], whether these graphs are con-
stant spanners [6,14], or whether they are compatible with 
simple online routing algorithms [18].

A problem that attracted much attention is the Hamil-
tonicity of Delaunay graphs: Does DG(S) contain a Hamil-
tonian cycle for every point set S? Dillencourt [13]
answered this question negatively by providing an exam-
ple of a set of points whose Delaunay graph is a non-
Hamiltonian triangulation. This naturally raises the ques-
tion whether there exist variants of the Delaunay graph 
that do always contain a Hamiltonian cycle.

This problem has been studied for the Delaunay graph 
in the L∞ metric. This graph contains an edge between 
pi, p j ∈ S if and only if there exists an axis-aligned square 
containing pi, p j and no other point in S . Even though 
Delaunay graphs in the L∞ metric need not contain a 
Hamiltonian cycle, they satisfy the slightly weaker prop-
erty of containing a Hamiltonian path, as shown by Ábrego 
et al. [2].

Another natural variant of Delaunay graphs which 
has received some interest is that of k-Delaunay graphs, 
k-DG(S) for short [1]. In this case, the definition is relaxed 
in the following way: pi, p j ∈ S are connected by an edge 
if and only if there exists a closed disk with pi , p j on its 
boundary that contains at most k points of S \ {pi, p j}. 
Analogous generalizations lead to k-Gabriel graphs and 
k-relative neighborhood graphs. The k-Gabriel graph of S , 
denoted by k-GG(S), is the graph in which pi, p j are con-
nected by an edge if and only if |C-DISC(pi, p j) ∩ S| ≤ k +2
(see [20]). The k-relative neighborhood graph of S , denoted 
by k-RNG(S), is the graph in which pi, p j are connected 
by an edge if and only if there exist at most k points p� ∈ S
such that d(pi, p�) < d(pi, p j) and d(p j, p�) < d(pi, p j)

(see [10]).
Notice that 0-DG(S) = DG(S) and, for any k ≥ 0, 

k-DG(S) ⊆ (k + 1)-DG(S). Since k-DG(S) is the complete 
graph for k ≥ n/2 [1] and the complete graph is Hamilto-
nian, the following question arises: What is the minimum 
value of k such that k-DG(S) is Hamiltonian for every S? 
Abellanas et al. [1] conjectured that this value is 1, that is, 
1-DG(S) is already Hamiltonian. The same question can be 
formulated for k-GG(S) and k-RNG(S).

The first upper bound for such minimum value of k
was given by Chang et al. [9], who proved that 19-RNG(S)

is always Hamiltonian.3 Since, for any k ≥ 0, k-RNG(S) ⊆
k-GG(S) ⊆ k-DG(S), the result implies that 19-GG(S) and 
19-DG(S) are also Hamiltonian. Later, Abellanas et al. [1]
improved the bound for the latter graphs by showing that 

3 Chang et al. [9] define k-RNG(S) in a slightly different way, so 
k-RNG(S) in their paper is equivalent to (k − 1)-RNG(S) in our paper.

15-GG(S) (and thus 15-DG(S)) is already Hamiltonian.4 In 
this short paper we improve their bound as follows:

Theorem 1. For any set of points S, the graph 10-GG(S) is 
Hamiltonian.

We note that related properties of k-Gabriel graphs 
have been recently considered by Biniaz et al. [4]. In par-
ticular, the authors show that 10-GG(S) always contains 
a Euclidean bottleneck perfect matching, that is, a perfect 
matching that minimizes the length of the longest edge. 
Our proof of Theorem 1 actually shows that 10-GG(S) al-
ways contains a Euclidean bottleneck Hamiltonian cycle, 
which is a Hamiltonian cycle minimizing the length of the 
longest edge. Even though the two results are closely re-
lated, there is no direct implication between them.

We prove Theorem 1 in Section 2. Our proof uses the 
same general strategy as the ones in [1,9]: We select a 
particular Hamiltonian cycle of the complete graph on S , 
and we find a value of k such that k-DG(S) contains 
this Hamiltonian cycle. In Section 3, we show that the 
best result that can possibly be proved with this partic-
ular approach is the Hamiltonicity of 6-Gabriel graphs (we 
also indicate the existence of an unpublished example [5]
showing that the method cannot go beyond 8-GG). We fur-
ther point out that it might be possible to decrease the 
value 10 by using a quadratic solver. Finally, we provide 
an example showing that 1-Gabriel graphs are not always 
Hamiltonian.

2. Proof of Theorem 1

The first steps of our proof go along the same lines 
as the arguments in [1] showing that 15-Gabriel graphs 
are Hamiltonian. The same general strategy was first used 
in [9]. We provide the details for completeness.

We denote by H the set of all Hamiltonian cycles of 
the complete graph on S . Given a cycle h ∈ H, we de-
fine the distance sequence of h, denoted ds(h), as the se-
quence containing the lengths of the edges of h sorted in 
decreasing order (the length of an edge is the length of 
the straight-line segment connecting its endpoints). Then, 
we define a strict order on the elements of H as fol-
lows: for h1, h2 ∈ H, we say that h1 	 h2 if and only if 
ds(h1) > ds(h2) in the lexicographical order.

Let m be a minimal element of H with respect to the 
order that we have just defined. In the remainder of this 
section we show that all edges of m belong to 10-GG(S), 
which in particular implies that 10-GG(S) is Hamiltonian.

Let e = xy be any edge of m. We are going to show that 
e is in 10-GG(S). Without loss of generality, we suppose 
that x = (−1, 0) and y = (1, 0). For any point p in R2, we 
write ‖p‖ for the distance of p from the origin o = (0, 0).

Let U = {u1, u2, . . . , uκ } be the set of points in S dif-
ferent from x, y that are contained in C-DISC(x, y). We 
want to prove that κ ≤ 10. Suppose that, if we traverse 
the entire cycle m starting from the “directed” edge −−→xy and 
finishing at x, we encounter the vertices of U in the order 

4 There also exists an unpublished upper bound of 13 [8].
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