
Information Processing Letters 115 (2015) 882–885

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A second-order formulation of non-termination

Fred Mesnard, Étienne Payet ∗

Université de La Réunion, EA2525-LIM, Saint-Denis de La Réunion, F-97490, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 June 2014
Received in revised form 23 February 2015
Accepted 24 May 2015
Available online 28 May 2015
Communicated by J.L. Fiadeiro

Keywords:
Program correctness
Termination
Non-termination
Monadic second-order logic

We consider the termination/non-termination property of a class of loops. Such loops are
commonly used abstractions of real program pieces. Second-order logic is a convenient
language to express non-termination. Of course, such property is generally undecidable.
However, by restricting the language to known decidable cases, we exhibit new classes of
loops, the non-termination of which is decidable. We present a bunch of examples.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we recall that second-order logic is a
convenient language to express non-termination of while
loops, modelled as rules. Such rules are commonly used
abstractions of real program pieces, see, e.g., [13] for the
Java programming language. Our main contribution is the
definition of two new classes of rules, the termination of
which is decidable, by restricting the language to known
decidable cases, namely S1S and S2S. We also show and
illustrate how decision procedures for their weak ver-
sions WS1S and WS2S can help proving termination/non-
termination.

We organise the paper as follows. Section 2 presents
the main concepts we need while Section 3 gives the the-
oretical results of the paper. Section 4 illustrates the results
by means of examples and in Section 5 we discuss related
works. Finally, Section 6 concludes the paper.

* Corresponding author.
E-mail addresses: frederic.mesnard@univ-reunion.fr (F. Mesnard),

etienne.payet@univ-reunion.fr (É. Payet).

2. Preliminaries

We give a quick description of S1S and S2S, see [14] for
a more detailed presentation. S1S is the monadic Second-
order theory of 1 Successor. Interpretations correspond to
finite or infinite words over a given finite alphabet �.
Terms are constructed from the constant 0 and first-order
variables x, y, . . . by application of the successor func-
tion +1, which is left-associative. We abbreviate n suc-
cessive applications of +1 starting from 0 (i.e., 0 + 1 +
1 + · · · + 1) to n. Atomic formulæ are constructed from
terms, second-order variables X , Y , . . . and predicates of
the form Pa where a ∈ �. They have the form t = t′ ,
t < t′ , t ∈ X , Pa(t) where t and t′ are terms. Formulæ are
constructed from atomic formulæ, the usual boolean con-
nectives (∨, ∧, . . .) and quantification (∀ and ∃) over first
and second-order variables. First-order variables are inter-
preted as elements of N representing positions in words
and second-order variables as subsets of N. Constant 0 is
interpreted as the first position in a word and function +1
as the next position. The formula Pa(t) is true in a word
w if at position t of w there is character a. WS1S (Weak
S1S) is a restriction of S1S where second-order variables
are interpreted as finite sets only.

S2S is the monadic Second-order theory of 2 Succes-
sors. Interpretations correspond to finite or infinite labelled

http://dx.doi.org/10.1016/j.ipl.2015.05.012
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.05.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:frederic.mesnard@univ-reunion.fr
mailto:etienne.payet@univ-reunion.fr
http://dx.doi.org/10.1016/j.ipl.2015.05.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.05.012&domain=pdf

F. Mesnard, É. Payet / Information Processing Letters 115 (2015) 882–885 883

binary trees over a given finite alphabet �. Terms and for-
mulæ are constructed as in S1S except that constant 0
is replaced with ε and the successor function +1 is re-
placed with functions .0 and .1, which are left-associative.
We abbreviate successive applications of these functions,
for instance x.0110 stands for x.0.1.1.0, which corresponds
to (((x.0).1).1).0, and 0110 stands for ε.0.1.1.0. First-order
variables are interpreted as elements of {0, 1}∗ represent-
ing positions in binary trees and second-order variables as
subsets of {0, 1}∗ . Constant ε is interpreted as the root po-
sition of a binary tree, .0 as the left successor, .1 as the
right successor and < as the proper-prefix relation (for in-
stance 01 < 0110 but 00 ≮ 0110). WS2S (Weak S2S) is a
restriction of S2S where second-order variables are inter-
preted as finite sets only.

A rule has the form r : x̃ → ψ(x̃, ỹ), ỹ where r is the
identifier of the rule, ψ is a binary relation and x̃ and ỹ are
tuples of distinct first-order variables ranging over a given
domain. If r is a monadic rule of the form x → ψ(x, y), y
and ψ(x, y) is a monadic second-order formula of S1S
(S2S) with x and y as free variables, we call r a monadic
S1S (respectively, S2S) rule. Some examples can be found
in Section 4. We define an operational semantics as fol-
lows. Starting from a concrete tuple x̃0 of elements of the
domain, we first check whether there exists a concrete
tuple x̃1 such that ψ(x̃0, x̃1). If no such tuple exists, the
computation stops. Otherwise, we choose any such tuple
x̃1 and reiterate. The rule r loops if we can find a concrete
tuple x̃0 starting an infinite computation. If no such tuple
exists, r terminates.

3. A second-order formulation of non-termination

We consider the following second-order formulation of
non-termination. Let r : x̃ → ψ(x̃, ỹ), ỹ be a rule.

Definition 1 (Recurrence set). (See [8].) We let φr denote
the second-order formula

∃X

{ ∃x̃ x̃ ∈ X ∧ (1)

∀x̃∃ ỹ (x̃ ∈ X ⇒ [ψ(x̃, ỹ) ∧ ỹ ∈ X]) (2)

A recurrence set for r is a set X satisfying φr .

Condition (1) of Definition 1 simply states that the re-
currence set X is not empty. Condition (2) ensures that for
any element x̃ of X , there is an element ỹ of X which sat-
isfies the formula ψ(x̃, ỹ) defining the rule r. The existence
of a recurrence set is equivalent to non-termination.

Theorem 2. (See [8].) φr is true if and only if r loops.

Proof. We prove both implications.
(⇒). As φr is true, we can start by selecting any arbitrary
x̃0 ∈ X . We know that there exists ỹ0 ∈ X s.t. ψ(x̃0, ỹ0).
By iterating this process, we construct an infinite compu-
tation. Hence r loops.
(⇐). As there exists x̃0 such that r loops, let us consider an
infinite computation starting at x̃0: x̃0, x̃1, . . . , x̃n, Let
X = {x̃i |i ≥ 0}. X is a non-empty set verifying ∀x̃∃ ỹ (x̃ ∈
X ⇒ [ψ(x̃, ỹ) ∧ ỹ ∈ X]). Hence φr holds. �

The second-order formula φr is a necessary and suffi-
cient condition for non-termination of at least one of the
computations r can generate. Symmetrically, ¬φr is true if
and only if for every value x̃0, any computation starting
at x̃0 halts. As such a problem is in general undecidable
(see, e.g., [3]), it follows that φr is not computable. How-
ever, when the second-order logic is restricted to decidable
cases, we obtain classes of rules for which the termina-
tion/non-termination property is decidable.

Theorem 3. Termination of a monadic S1S or S2S rule is decid-
able.

Proof. The monadic second-order logics S1S and S2S are
decidable [5,12] and so is φr for a monadic S1S or S2S
rule r. If φr is true then r loops else r terminates. �

Weak versions of these logics, where second-order vari-
ables range over finite sets, are also decidable and decision
procedures have been implemented (see, e.g., MONA [9]).
Let r be a monadic S1S or S2S rule.

Corollary 1. Decision procedures for WS1S and WS2S provide
computable sufficient conditions for proving non-termination of
r in the corresponding structure.

Proof. If such a decision procedure states that φr is true,
then we know that there exists a non-empty finite set X
such that φr holds. Hence r loops. �

Note that if the decision procedure states that φr is
false, then there is no finite set X satisfying φr but an
infinite set X satisfying φr may exist. Hence we cannot
conclude, except in the following case.

Corollary 2. When we know that the set of points which can
start a computation from r is finite, decision procedures for
WS1S and WS2S also decide termination of r in the correspond-
ing structure.

Proof. If a decision procedure states that φr is true, then
by Corollary 1 r loops. Else it states that φr is false. So
there does not exist a finite set X satisfying φr . As X can-
not be infinite by hypothesis, it means that there does not
exist a set X such that φr holds. Hence r terminates. �

Note that the condition of Corollary 2 can be decided in
WS1S as it can be stated as ∃m ∀x (x > m ⇒ ¬ ∃y ψ(x, y)).
However Example 6 shows that it does not decide termi-
nation.

4. Examples

Example 4 (S1S). Consider r : x → ψ(x, y), y where

ψ(x, y) = (3 < x ∧ x < 10 ∧ y < x) ∨ (x < 3 ∧ y = x + 1)

The set of points which can start a computation from r is
finite: {x ∈N|x
= 3 ∧x < 10}. MONA tells us that φr is false.
By Corollary 2, r terminates. �

Download English Version:

https://daneshyari.com/en/article/428851

Download Persian Version:

https://daneshyari.com/article/428851

Daneshyari.com

https://daneshyari.com/en/article/428851
https://daneshyari.com/article/428851
https://daneshyari.com

