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We present a new, dynamical way to study powers (that is, repetitions) in Sturmian 
words based on results from Diophantine approximation theory. As a result, we provide 
an alternative and shorter proof of a result by Damanik and Lenz characterizing powers in 
Sturmian words [6]. Further, as a consequence, we obtain a previously known formula for 
the fractional index of a Sturmian word based on the continued fraction expansion of its 
slope.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In 2003 Damanik and Lenz [6] completely described 
factors of length n of a Sturmian word which occur as pth
powers for every n ≥ 0 and p ≥ 1. Damanik and Lenz prove 
a series of results concerning how factors of a Sturmian 
word align to the corresponding (finite) standard words. By 
a careful analysis of the alignment, they obtain the com-
plete description of powers thanks to known results on 
powers of standard words. Our method is based on the dy-
namical view of Sturmian words as codings of irrational ro-
tations. Translating word-combinatorial concepts into cor-
responding dynamical concepts allows us to apply power-
ful results from Diophantine approximation theory (such 
as the Three Distance Theorem) providing a more geomet-
ric proof of the result of Damanik and Lenz. Our methods 
allow us to avoid tricky alignment arguments making the 
proof in our opinion easier to follow. Furthermore, the re-
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sults allow us to infer a formula for the fractional index of 
a Sturmian word based on the continued fraction expan-
sion of its slope. This formula and its proof appeared in an 
earlier paper by Damanik and Lenz [5] and was also estab-
lished purely combinatorially using alignment arguments. 
The formula was independently obtained with different 
methods by Carpi and de Luca [3] and Justin and Pirillo 
[7]. For partial results and works related to powers in Stur-
mian words see e.g. the papers of Mignosi [11], Berstel [2], 
Vandeth [13], and Justin and Pirillo [7].

The paper is organized as follows: in Section 2 we 
briefly recall results concerning continued fractions and 
rational approximations and prove the purely number-
theoretic and important Proposition 2.2 for later use in 
Section 4. In Section 3 we state needed facts about Stur-
mian words with appropriate references. Section 4 con-
tains the main results and their proofs.

2. Continued fractions and rational approximations

Every irrational real number α has a unique infinite 
continued fraction expansion
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α = [a0;a1,a2,a3, . . .] = a0 + 1

a1 + 1

a2 + 1

a3 + · · ·

(1)

with a0 ∈ Z and ak ∈ N for all k ≥ 1. The numbers ai are 
called the partial quotients of α. Good references on contin-
ued fractions are the books of Khinchin [8] and Cassels [4]. 
We focus here only on irrational numbers, but we note 
that with small tweaks much of what follows also holds 
for rational numbers, which have finite continued fraction 
expansions.

The convergents ck = pk
qk

of α are defined by the recur-
rences

p0 = a0, p1 = a1a0 + 1, pk = ak pk−1 + pk−2, k ≥ 2,

q0 = 1, q1 = a1, qk = akqk−1 + qk−2, k ≥ 2.

The sequence (ck)k≥0 converges to α. Moreover, the even 
convergents are less than α and form an increasing se-
quence and, on the other hand, the odd convergents are 
greater than α and form a decreasing sequence.

If k ≥ 2 and ak > 1, then between the convergents ck−2
and ck there are semiconvergents (called intermediate frac-
tions in Khinchin’s book [8]) which are of the form

pk,l

qk,l
= lpk−1 + pk−2

lqk−1 + qk−2

with 1 ≤ l < ak . When the semiconvergents (if any) be-
tween ck−2 and ck are ordered by the size of their denomi-
nators, the obtained sequence is increasing if k is even and 
decreasing if k is odd.

Note that we make a clear distinction between con-
vergents and semiconvergents, i.e., convergents are not a 
specific subtype of semiconvergents.

For the rest of this paper we make the convention that 
α refers to an irrational number with a continued fraction 
expansion as in (1) having convergents pk

qk
and semicon-

vergents pk,l
qk,l

as above.

A rational number a
b is a best approximation of the real 

number α if for every fraction c
d such that c

d �= a
b and d ≤ b

it holds that

|bα − a| < |dα − c| .
In other words, any other multiple of α with a coeffi-
cient at most b is further away from the nearest integer 
than is bα. The next proposition shows that the best ap-
proximations of an irrational number are connected to its 
convergents (for a proof see Theorems 16 and 17 of [8]).

Proposition 2.1. The best rational approximations of an irra-
tional number are exactly its convergents.

We identify the unit interval [0, 1) with the unit cir-
cle T. Let α ∈ (0, 1) be irrational. The map

R : [0,1) → [0,1), x �→ {x + α},
where {x} stands for the fractional part of the number x, 
defines a rotation on T. The circle partitions into the in-
tervals (0, 12 ) and ( 1

2 , 1). Points in the same interval of the 

partition are said to be on the same side of 0, and points 
in different intervals are said to be on the opposite sides 
of 0. (We are not interested in the location of the point 1

2 .) 
The points {qkα} and {qk−1α} are always on the opposite 
sides of 0. The points {qk,lα} with 0 < l ≤ ak always lie be-
tween the points {qk−2α} and {qkα}; see (3).

We measure the shortest distance to 0 on T by setting

‖x‖ = min{{x},1 − {x}}.
We have the following facts for k ≥ 2 and for all l such that 
0 < l ≤ ak:

‖qk,lα‖ = (−1)k(qk,lα − pk,l), (2)

‖qk,lα‖ = ‖qk,l−1α‖ − ‖qk−1α‖. (3)

We can now interpret Proposition 2.1 as

min
0<n<qk

‖nα‖ = ‖qk−1α‖, for k ≥ 1. (4)

Note that rotating preserves distances; a fact we will often 
use without explicit mention. In particular, the distance 
between the points {nα} and {mα} is ‖|n − m|α‖. Thus 
by (4) the minimum distance between the distinct points 
{nα} and {mα} with 0 ≤ n, m < qk is at least ‖qk−1α‖. 
The formula (4) tells what is the point closest to 0 among 
the points {nα} for 1 ≤ n ≤ qk − 1. We are also interested 
to know the point closest to 0 on the side opposite to 
{qk−1α}. The next result is very important and concerns 
this.

Proposition 2.2. Let α be an irrational number. Let n be an 
integer such that 0 < n < qk,l with k ≥ 2 and 0 < l ≤ ak. If 
‖nα‖ < ‖qk,l−1α‖, then n = mqk−1 for some integer m such 
that 1 ≤ m ≤ min{l, ak − l + 1}.

Proof. Suppose that ‖nα‖ < ‖qk,l−1α‖, and assume for a 
contradiction that the point {nα} is on the same side of 
0 as {qk−2α}. Since n < qk,l , we conclude that n �= qk,r for 
r ≥ l. By (3) and our assumption that ‖nα‖ < ‖qk,l−1‖, we 
see that n �= qk,r with 0 ≤ r ≤ l −1. As ‖nα‖ > ‖qkα‖ by (4), 
we infer that the point {nα} must lie between the points 
{qk,l′α} and {qk,l′+1α} for some l′ such that 0 ≤ l′ < ak . The 
distance between the points {nα} and {qk,l′ } is less than 
‖qk−1α‖. By (4), it must be that qk,l′ ≥ qk; a contradiction.

Suppose for a contradiction that n is not a multiple 
of qk−1. Then the point {nα} lies between the points 
{tqk−1α} and {(t + 1)qk−1α} for some t such that 0 <
t < �1/‖qk−1α‖�. As {nα} is on the same side of 0 as 
the point {qk−1α}, it follows that ‖nα‖ > ‖tqk−1α‖ and 
‖tqk−1α‖ = t‖qk−1α‖. The distance between the points 
{nα} and {tqk−1α} is less than ‖qk−1α‖, so by (4) it must 
be that tqk−1 ≥ qk = akqk−1 + qk−2. Thus necessarily t > ak . 
Using (3) we see that the distance between the points 
{qkα} and {qk−2α} is ak‖qk−1α‖. Since ‖qkα‖ < ‖qk−1α‖, 
we infer that

‖qk,l−1α‖ ≤ ‖qk−2α‖ = ak‖qk−1α‖ + ‖qkα‖
< (ak + 1)‖qk−1α‖. (5)

Therefore by our assumption,
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