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MAC striping intermixes a payload with its authentication tag, placing the bits used for 
message authentication in positions derived from a secret key. The use of MAC striping has 
been suggested to authenticate encrypted payloads using short tags. For an idealized MAC 
scheme, the probability of a selective forgery has been estimated as 

(
�+m

m

)−1 · 2−m , when 
utilizing MAC striping with �-bit payloads and m-bit tags. We show that this estimate is 
too optimistic. For m ≤ � and any payload, we achieve a selective forgery with probability 
≥ (

�+m
m

)−1
, and usually many orders of magnitude more than that.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When dealing with sensor networks, e. g., in mHealth 
applications, it may be necessary to authenticate very 
short payloads. A standard solution with a Message Au-
thentication Code (MAC) can result in drastic data over-
head. Mare et al. proposed MAC striping as a technique to 
alleviate this problem to some extent [1,2]. This technique 
intermixes a payload with its authentication tag, placing 
the bits used for message authentication at random posi-
tions, determined by a secret key. For a tag with m bits 
and a payload with � bits, a security margin of 

(
�+m

m

) · 2m

was attributed to this construction, suggesting the use of 
remarkably short tags.

After recalling the description of MAC striping and dis-
cussing the notion of a selective forgery in this context, we 
show that the security margin of MAC striping has been 
overestimated significantly.
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2. Preliminaries

Commonly, a MAC algorithm is formalized as a triple of 
algorithms:

Key generation: this algorithm chooses a secret key K .
Tag generation: this algorithm receives as input a pay-

load P and the secret key K , and outputs a tag T
for P .

Verification: this algorithm receives as input the secret 
key K , a payload P , and a tag T and outputs valid
or invalid.

This formalization is tailored for a scenario where the tag 
is expected to be sent separately from the payload to be 
verified.

2.1. MAC striping

Instead of concatenating payload and tag, MAC striping 
intermixes them [1,2]. For each message to be processed, 
fresh tag bit positions are chosen by means of a pseudo 
random generator function which depends, among other 
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things, on a secret key.1 For an �-bit payload P and m-bit 
tag T , there are 

(
�+m

m

)
choices to place the tag bits in the 

intermixed message. We assume that the tag T is chosen 
uniformly at random in {0, 1}m and the set S of tag bit 
positions is chosen uniformly at random among all 

(
�+m

m

)
size-m subsets of {1, . . . , � + m}. If the same payload is 
processed repeatedly, each time a new tag and new tag 
positions are selected. This is consistent with the security 
analysis in [2], stating

“to forge a message of his choice, the adversary has to 
guess the matching MAC bits out of 2m possibilities, 
and MAC-bit locations out of 

(
�+m

m

)
possible MAC-bit lo-

cations, making the probability of success 1
2m

(�+m
m

) .”

The verification algorithm does not receive payload and tag 
as separate inputs. Instead, it receives as input a single 
message M of length m + � and the (payload-independent) 
secret key. The original analysis overlooks the fact that a 
given payload P can lead to the same message for sev-
eral choices S and T . An extreme example is the payload 
P = 0� in combination with the tag T = 0m , which for 
every choice of S results in the same message 0m+� . In 
general, the probability p(M|P ) that a particular payload 
P results in a message M is

p(M|P ) = c(M, P )

2m
(
�+m

m

)
where c(M, P ) is the number of position/tag pairs (S, T )

that produce M from P . In other words, c(M, P ) is the 
number of ways to obtain P from M by deleting m bits. 
So 

∑
P∈{0,1}� c(M, P ) = (

�+m
m

)
and 

∑
M∈{0,1}�+m c(M, P ) =(

�+m
m

)
2� .

2.2. Selective forgeries

With a standard definition of a selective forgery, the ad-
versary is asked to generate a valid payload/tag pair (P , T )

for a payload of his choice. Following the usual convention 
from signature schemes, to be “of the adversary’s choice” 
it suffices to commit to the payload prior to the attack. 
With this convention, restricting to the payload P = 0� is 
legitimate. We also consider the universal scenario where 
P ∈ {0, 1}� is provided to the adversary before the attack.

When using MAC striping for a given payload P , the 
adversary does not need to select a tag T and position 
set S . If he is able to generate a message M which the 
verification algorithm classifies as valid and where the cor-
rect payload P is recovered by the recipient, the selective 
forgery succeeded: the chosen payload has been accepted 
as authentic. Note that the requirement of [2] that the 
payload P is an encrypted version of the intended text is 
immaterial here, as the verification and adversary both in-
teract only with the payload P .

1 In the context considered by Mare et al., a message header is involved 
as well, but it is immaterial for our analysis of MAC striping. So we omit 
a discussion of header information.

3. Reevaluating the security margin

Fix a payload P ∈ {0, 1}� which the adversary will at-
tempt to have authenticated. Our adversary will only sub-
mit messages of the correct length � +m with c(M, P ) > 0. 
The number of such messages turns out to be indepen-
dent of P and is given in the following lemma. Diggavi 
et al. [3] attribute the first part of this result to Chvátal 
and Sankoff [4]. We provide a proof in Appendix A.

Lemma 1. The number of binary sequences of length � +m con-
taining a fixed P ∈ {0, 1}� as a subsequence is 

∑m
k=0

(
�+m

k

)
. For 

1 < m < �, this number is greater than 
(
�+m

m

)
and less than 

�
�−m

(
�+m

m

)
.

Hence, submitting (any of) the most likely message(s) 
of length � + m containing P as a subsequence re-
sults in a successful forgery with probability at least(∑m

k=0

(
�+m

k

))−1
.

For a given payload P , there are at least m messages 
with c(M, P ) = 1: distribute the tag bits at the beginning 
and/or end of the message and make each different than 
the initial or terminal bit of P . Each of these messages is 
correct with probability 1

2m
(�+m

m

) . So one can expect that the 

most likely messages are accepted with probability much 
greater.

Example. The values � = 80 and m = 16 have been con-
sidered in [2], and the success probability for a selective 
forgery is estimated to be 1

216
(96

16

) ≈ 2−75.20. From Lemma 1

we see that the number of 96-bit messages containing any 
given 80-bit payload is 

∑16
k=0

(96
k

) ≈ 259.51, and the up-

per bound given for this sum was 80
80−16

(96
16

) ≈ 259.52. This 
guarantees a success probability of ≈ 2−59.51, but the ad-
versary can do much better. Let us look at two specific 
payloads which we suspect give the extremes.

P = 080: The message 096 succeeds with probability 2−16

(note that the length of the payload is irrelevant 
here).

P = (01)40: The message (01)48 succeeds with probabil-

ity 
(88

8

)
216

(96
16

) ≈ 2−39.30. Where does the numerator 

come from? We must delete some 16 bits leaving 
the desired payload. When we choose a certain 
bit to delete we have no choice but to delete 
the next bit as well. Then we are free to keep 
or delete the following bit. So the deleted bits 
must be 8 adjacent pairs; any such choice will 
work. So, consider all the ways to line up eight 
1 × 2 rectangular boxes and eighty 1 × 1 squares 
in a line, there are 

(88
8

)
. Now write {0, 1}48 in or-

der with 2 bits in each rectangle and one in each 
square. The bits in the squares form the payload.

3.1. Selective forgery for arbitrary prescribed payload

Fix a payload P = (P1, . . . , P�) ∈ {0, 1}� . We give a 
method to find a message M with c(M, P ) ≥ 2m assum-
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