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A square is the concatenation of a nonempty word with itself. A word has period p if its 
letters at distance p match. The exponent of a nonempty word is its length divided by 
its smallest period. In this article, we give some new results on the trade-off between the 
number of squares and the number of cubes in infinite binary words whose square factors 
have odd periods.
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1. Introduction

Enumerating the repetitions in infinite words is a clas-
sic problem in combinatorics on words that has been stud-
ied in depth over the last 100 years (see for example, 
[10,3] and references therein).

A square is the concatenation of a nonempty word 
with itself. Let g(n) be the length of a longest binary 
word containing at most n distinct squares. Then g(0) = 3
(e.g., 010), g(1) = 7 (e.g., 0001000) and g(2) = 18 (e.g., 
010011000111001101).

In 1974, Entringer, Jackson, and Schatz [5] showed that 
there exists an infinite word with 5 distinct squares. There-
fore, they proved that g(5) = ∞. Later, Fraenkel and Simp-
son [6] showed that there exists an infinite binary word 
that contains only three squares, 00, 11, and 0101, and 
thus g(3) = ∞. A somewhat simplified proof of this result 
was given by Rampersad, Shallit and Wang [9]. Later, in 
2006, Harju and Nowotka [7] provided a simpler proof of 
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this result and, finally, Badkobeh [2] presented yet another 
proof by exploiting two simple morphisms.

Instead of avoiding all squares, one interesting varia-
tion on the same problem is to avoid larger repetitions. 
Entringer, Jackson, and Schatz [5] showed that there ex-
ist infinite binary words avoiding squares of period at least 
three. Later works aimed at avoiding large squares, such as, 
for instance, Dekking [4], Rampersad et al. [9], Shallit [11], 
Ochem [8].

In this article, we provide study pattern avoidance from 
a different point of view. We analyse the possibility of 
avoiding repetitions of even and odd periods, and further 
impose a constraint on their maximal exponent. This new 
approach enables us to provide new and interesting re-
sults.

We show that there exists no infinite 3+-free binary 
word avoiding all squares of odd period. We also show that 
there exists no infinite binary word simultaneously avoid-
ing cubes and squares of even period. Moreover, we show 
that there exists an infinite 3+-free binary word avoiding 
squares of even period.

The trade-off between the maximal period length and 
the number of repetitions follows a similar trade-off be-
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tween the number of cubes and the number of distinct 
squares. A similar study was comprehensively carried out 
by the first author in [1].

The article is structured as follows. We provide some 
definitions in Section 2. In Section 3, we present the proof 
technique that will be used throughout this article. In ad-
dition, we prove that there exists no infinite 3+-free binary 
word avoiding all squares of odd period and there ex-
ists no infinite binary word simultaneously avoiding cubes 
and squares of even period. In Section 4, we show that 
in fact there exists an infinite 3+-free binary word avoid-
ing squares of even period. In Section 5, we reduce the 
number of repetitions contained in infinite binary words 
without compromising the constraint on the parity of the 
periods of squares. We conclude that the minimal number 
of squares in such words is 7 when only 1 cube occurs. 
The number reduces to 4 when 2 cubes are allowed in the 
word. In Section 6, we give a summary of our results.

2. Preliminaries

An alphabet is any non-empty set, the members of 
which are called letters. A word, or a string, is a sequence 
of letters drawn from the alphabet. The empty word ε is a 
string of length 0 that is considered to be a word over ev-
ery alphabet. The length of the word w , denoted by |w|, 
is the number of occurrences of letters in w . For example, 
|abaca| = 5.

We consider the ternary alphabet A = {a, b, c}, the bi-
nary alphabet B = {0, 1}, and the n-ary alphabet Σn for 
n > 3.

The word v is called a factor of x if there exist words u
and w such that x = uv w . In the case u = ε (resp., w = ε), 
v is a prefix (resp., a suffix) of x. A nonempty word x has 
period p if x[i] = x[i + p] for all i for which the equation is 
meaningful. The exponent of x is its length divided by its 
smallest period.

The maximum exponent of a word w is the supremum 
of E(x), where E(x) is the set of exponents of all finite 
factors of x.

A square is a word of the form xx, where x is a non-
empty word. Cubes and k-th powers are defined accord-
ingly. A word is overlap-free if it does not contain any factor 
of the form xyxyx for a non-empty x. In general, a word is 
said to be α-free if it contains no factor of the form uβ for 
any rational number β ≥ α. It is α+-free if it contains no 
factor of the form uβ for any rational number β > α.

A morphism is a map h : Σ∗
n → Σ∗

m such that h(uv) =
h(u)h(v) for all u, v ∈ Σ∗

n . This implies that h(ε) = ε . In 
addition, the morphism h is completely defined by the 
pairs (a, h(a)) for a ∈ Σn . We refer to images of letters 
as codewords. If h(a) = ax for some letter a ∈ Σn , then 
we say that h is prolongable on a, and we can then it-
erate h infinitely often to get the fixed point h∞(a) :=
axh(x)h2(x)h3(x) · · ·. For q ≥ 2 a morphism h is said to be 
q-uniform if |h(a)| = q for all a ∈ Σn . A uniform morphism 
h is synchronising when h(ab) = vh(c)w implies that either 
v = ε and a = c or w = ε and b = c, for any a, b, c ∈ Σn

and v, w ∈ Σ∗
m . Notice that a synchronising morphism h is 

always injective (actually it is injective on the set Σn of 
monoid generators). Moreover, if it is q-uniform then, for 

each factor u of a word in h(Σ∗
n ) such that |u| ≥ 2q − 1, 

there exists a unique factorisation u = xh(u′)y where u′ ∈
Σ∗

n and 0 ≤ |x|, |y| < q.

3. Words containing only repetitions of odd period

Here, we study further the infinite binary words and 
the squares they contain. Looking at the parity of the peri-
ods of the squares reveals interesting properties.

Note that the only infinite binary words omitting 00 
and 11 are (01)∞ and (10)∞ , both of which contain 
3+-powers. This proves the following proposition.

Proposition 1. There exists no infinite 3+-free binary word 
avoiding all squares of odd period.

Proposition 2. There exists no infinite binary word, simultane-
ously avoiding cubes and squares xx with |x| = 2k for k > 0. 
The length of a cube-free binary word containing only squares 
of odd period does not exceed 23.

Proof. Here, we try to build a binary word that avoids 
cubes and squares of even period. The following list con-
tains all possible strings with prefix 00, avoiding cubes 
and squares of even period:

00100100 00110010010 0011011001001100

001001100 0011001001100 0011011001001101100

00100110110010010 001100100110110010010 0011011001001101101

0010011011001001100 001100100110110010011 00110110011

0010011011001001101 001100100110110011 001101101

00100110110011 0011001001101101

001001101101 00110110010010

The maximum length of these words is 21. This is also 
true for words starting with 11. Now the only binary words 
avoiding 00, 11, cubes, and squares of even period are: 
{0, 1, 01, 10, 010, 101}. Concatenating these two sets will 
not produce a word complying with the properties whose 
length exceeds 23. �

The remainder of this section is dedicated to demon-
strating that if the constraint on the maximal exponent is 
relaxed so that the word may contain cubes, then avoiding 
squares of even period becomes possible.

The same technique is used to prove each of the the-
orems in this article. The technique is stated below. To 
demonstrate how this technique works, a step-by-step 
proof is given for Proposition 3, as an example.

Proof technique. Let g be a synchronising morphism g :
A∗ → B∗ , and let s be an infinite square-free word in A∗ . 
Notice that the only squares occurring in g(s) also occur in 
the images of square-free factors of s of length 3. There-
fore, to study the squares contained in g(s) it is enough to 
look at all the images of triplets in A∗ (a triplet is a word 
of length 3). This set is finite and therefore it is possible 
to count all the squares contained in the images of the set. 
In order to prove the theorems presented in this article, 
it is sufficient to show that the given morphisms are syn-
chronising. To demonstrate this we look at the images of 
all the doublets (words of length 2) in A∗ to investigate 
if they comply with the definition of synchronising mor-
phisms.
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