
Information Processing Letters 115 (2015) 414–417

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Extracting reusable components: A semi-automated approach

for complex structures

Eleni Constantinou a,∗, Athanasios Naskos a, George Kakarontzas a,b,
Ioannis Stamelos a

a Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
b Department of Computer Science and Telecom., T.E.I. of Larissa, Larissa 41110, Greece

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 July 2014
Received in revised form 2 November 2014
Accepted 17 November 2014
Available online 26 November 2014
Communicated by J.L. Fiadeiro

Keywords:
Software Engineering
Component Extraction
Cyclic Dependencies
Software Reuse

Source code comprehension depends on the source code quality and structural complexity.
Software systems usually have complex structures with cyclic dependencies that make
their comprehension very demanding. We present a semi-automated process that guides
software engineers to untangle complex structures in order to extract reusable components.
The process consists of iterative analysis in order to identify and transform the classes
responsible for the structural complexity and effectively reducing candidate components’
sizes. We evaluate our approach on two systems and demonstrate how the proposed
approach assists the reusable component extraction.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Reuse tasks of open source or legacy systems are fa-
cilitated when architectural and structural information is
provided. However, architectural information often does
not exist and thus, system understanding lies on the con-
crete architecture derived from the source code [1]. This
can be a time consuming task since software systems do
not comply with several design principles [2]. In particu-
lar, even though most design practices advise to comply
with Acyclic Dependency Principle (ADP) [3], cyclic de-
pendencies are widely observed since the most frequently
deployed architecture is the Big Ball of Mud [4,5]. Melton
and Tempero studied 78 open and closed source projects
and report that 45% present cycles of 100 classes whereas
10% present cycles of 1000 classes [5].

* Corresponding author.
E-mail addresses: econst@csd.auth.gr (E. Constantinou),

anaskos@csd.auth.gr (A. Naskos), gkakaron@teilar.gr (G. Kakarontzas),
stamelos@csd.auth.gr (I. Stamelos).

Reuse approaches include the reusing isolated classes
approach, where a small number of files should be copied
in order to reduce the compilation time, the search space
for classes’ comprehension and the amount of code that
could contain bugs [5]. However, a prerequisite is to extract
all their dependencies to produce a compilable component.
In cases of tangled structures with cyclic dependencies,
this task can lead to the extraction of large components
that contain classes not related to the required functional-
ity. Overall, smaller components are easier to understand
and adapt for reuse purposes. Therefore, we consider that
components have manageable sizes when the software en-
gineer can comprehend them without excessive effort.

The component extraction task starts with the selection
of an origin class for the extraction of its corresponding
component. The proposed approach guides software en-
gineers to comprehend systems with complex structure
and reduce the size of candidate components implicated
in tangled dependencies. Thus, cyclic dependencies must
be eliminated to facilitate source code reuse by apply-
ing the Dependency Inversion Principle (DIP). According to
DIP, an interface of the class is introduced and the class

http://dx.doi.org/10.1016/j.ipl.2014.11.007
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.11.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:econst@csd.auth.gr
mailto:anaskos@csd.auth.gr
mailto:gkakaron@teilar.gr
mailto:stamelos@csd.auth.gr
http://dx.doi.org/10.1016/j.ipl.2014.11.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.11.007&domain=pdf

E. Constantinou et al. / Information Processing Letters 115 (2015) 414–417 415

Fig. 1. Component extraction process model.

implements the interface. Classes that were depending on
this class now depend on the interface instead, and the
class only depends on the interface. Thus, the dependency
is inversed [3]. Finally, our approach iteratively analyzes
the system in order to transform classes responsible for
complex dependencies according to DIP.

The rest of the paper is organized as follows. In Sec-
tions 2 and 3 we present related work to component ex-
traction and the proposed process respectively. In Section 4
we present and discuss the results, and in Section 5 we
present the threats to validity. Finally, in Section 6 we con-
clude and provide future research directions.

2. Related work

Washizaki and Fukazawa [6] identify reusable parts of
Java systems and transform them into reusable JavaBeans
components. Although we consider a similar component
extraction approach, our approach focuses on the reduc-
tion of candidate component sizes. Marx et al. [7] propose
an approach to extract components starting from a set
of predefined entities and iteratively transform them by
refactorings with DIP in order to finalize the component.
However, they evaluate their approach on small applica-
tions (72–139 classes), while our approach aims to larger
and complex systems. Additionally, they only use DIP in
order to isolate the component from other components,
while we use DIP to transform the identified cut points in
order to reduce the size of the component. Wang et al. [8]
propose extracting components based on weighted connec-
tivity strength (WCS) metrics and a hierarchical clustering
algorithm. The main challenge they identify is that classes
from different layers of the system are classified together
due to their close relation, a barrier our approach attempts
to overcome. Other works related to component extrac-
tion mainly focus on clustering systems into components
[9–11]. However, such approaches do not consider an entry
point for the component extraction and do not necessarily
produce independent components. Therefore, the success-
ful reuse of the extracted components is not guaranteed by
these methods.

3. The proposed reusable component extraction process

A system’s structure is modeled as a directed graph
G = 〈V , E〉, where the set of nodes V and edges E rep-
resent the classes and the use relationships between them

respectively. A use relationship includes all types of depen-
dency between classes, i.e. inheritance, method call, etc.
The component extraction is a task where the software en-
gineer chooses the origin class that represents the entry
point to the required provided functionality, and extracts
the component. The candidate component (CC) CC(vi) is
the subgraph of G that is formed by including all the tran-
sitive dependencies of the origin class vi . Candidate Com-
ponent Size (CCS) is the size of the CC, CCS(vi) = |CC(vi)|.
The CC set information is enriched by the level of de-
pendency, that corresponds to the shortest path from the
origin class to reach each dependency.

Initially, each class is considered as a CC and the cor-
responding CCS values are extracted. CCS explosion phe-
nomenon occurs when the system’s obtained CCS values
initially present a linear increase, followed by a steep
growth. This occurs due to complex cyclic structures that
implicate a large number of classes. Complex dependen-
cies include cycles of classes, since they are formed by sets
of classes that depend directly or indirectly on each other
and can contain subcycles. Cyclic dependencies are iden-
tified according to Tarjan’s algorithm [12], where Strongly
Connected Components (SCCs) are recovered. Cycles coin-
cide with SCCs, since by definition SCCs are sets of vertices
such that for each pair of vertices within the set, there is
a directed path between them [12].

Fig. 1 presents the component extraction process. Ini-
tially, the software engineer defines the system under in-
vestigation and then, the system is analyzed to obtain
information about the SCCs, CCs, and CCS. The analysis
results are presented to the software engineer so as to in-
spect the attributes of the classes intended for component
extraction (e.g., CCS). If no origin classes are identified, the
process ends. Otherwise, he identifies the origin class and
if its CCS value is manageable, the component is extracted
and the process terminates.

If the CC suffers from the CCS explosion phenomenon
the software engineer provides the origin class as input
to the analysis and the outcome is a set of key classes
(KC) that propagate the CCS explosion phenomenon. More
specifically, key classes are members of the CC, KC ⊂ CC,
that participate in cyclic dependencies, KC ∈ SCC(Y), where
Y is a cycle in graph G . Thus, they share the same CCS
value regardless of their level of dependency to the ori-
gin class, CCS(x) = CCS(y) ∀x, y ∈ KC. The key classes are
identified by a top down search to each CC level of de-
pendency of the origin class. Initially, classes with identical

Download English Version:

https://daneshyari.com/en/article/428892

Download Persian Version:

https://daneshyari.com/article/428892

Daneshyari.com

https://daneshyari.com/en/article/428892
https://daneshyari.com/article/428892
https://daneshyari.com

