
Information Processing Letters 115 (2015) 418–424

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Symbolic tree automata

Margus Veanes ∗, Nikolaj Bjørner

Microsoft Research, Redmond, WA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 August 2011
Received in revised form 31 October 2014
Accepted 15 November 2014
Available online 22 November 2014
Communicated by L. Viganò

Keywords:
Tree automata
Algorithms
Logic
Satisfiability modulo theories
Formal methods

We introduce symbolic tree automata as a generalization of finite tree automata with
a parametric alphabet over any given background theory. We show that symbolic tree
automata are closed under Boolean operations, and that the operations are effectively
uniform in the given alphabet theory. This generalizes the corresponding classical
properties known for finite tree automata.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Finite word automata and finite tree automata provide a
foundation for a wide range of applications in software en-
gineering, from regular expressions to compiler technology
and specification languages. Despite their immense prac-
tical use, explicit representations are not feasible in the
presence of finite large alphabets. They require each tran-
sition to encode only a single element from the alphabet.
For example, string characters in standard programming
languages (such as the char type in C#) use 16-bit bit-
vectors, an explicit representation would thus require an
alphabet of size 216. Moreover, most common forms of fi-
nite automata do not support infinite alphabets.

A practical solution to the representation problem is
symbolic tree automata. They are an extension of classi-
cal tree automata that addresses this problem by allowing
transitions to be labeled with arbitrary formulas in a spec-

* Corresponding author.
E-mail addresses: margus@microsoft.com (M. Veanes),

nbjorner@microsoft.com (N. Bjørner).
URLs: http://research.microsoft.com/~margus (M. Veanes),

http://research.microsoft.com/~nbjorner (N. Bjørner).

ified label theory. While the idea of allowing formulas is
straightforward, typical extensions of finite tree automata
often lead to either undecidability of the emptiness prob-
lem, such as tree automata with equality and disequality
constraints [1], or many extensions lead to nonclosure un-
der complement, such as the generalized tree set automata
class [1], finite-memory tree automata [2] that generalize
finite-memory automata [3] to trees, or unranked data tree
automata [4]. We show that this is not the case for sym-
bolic tree automata. The key distinction is that the exten-
sion here is with respect to characters rather than adding
symbolic states or adding constraints over whole subtrees.

The symbolic extension is practically useful for exploit-
ing efficient symbolic constraint solvers when performing
basic automata-theoretic transformations: it enables a sep-
aration of concerns. The solver is used as a black box with
a clearly defined interface that exposes the label theory
as an effective Boolean algebra. The chosen label theory
can be specific to a particular problem instance. For ex-
ample, even when the alphabet is finite, e.g., 16-bit bit-
vectors, it may be useful for efficiency reasons to use
integer-linear arithmetic rather than bit-vector arithmetic
when the solver is more efficient over integers and when
only standard arithmetic operations (and no bit-level op-
erations) are being used. Recent work [5,6] on symbolic

http://dx.doi.org/10.1016/j.ipl.2014.11.005
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.11.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:margus@microsoft.com
mailto:nbjorner@microsoft.com
http://research.microsoft.com/~margus
http://research.microsoft.com/~nbjorner
http://dx.doi.org/10.1016/j.ipl.2014.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.11.005&domain=pdf

M. Veanes, N. Bjørner / Information Processing Letters 115 (2015) 418–424 419

string recognizers and transducers takes advantage of this
observation.

We here investigate the case of the more expressive
class of symbolic tree automata. Even though a symbolic
tree automaton is a finite object, a key point is that the
number of interpretations for symbolic labels does not
need to be finite. For example, as a consequence of our
main result (Theorem 2) a label theory may itself be the
theory of symbolic tree automata (over some basic label
theory).

In order to use classical tree automata algorithms, it
is possible to reduce a symbolic tree automaton A into a
classical finite tree automaton whose alphabet is given by
all of the satisfiable Boolean combinations of guards that
occur in A. However, such a transformation is in general
not practical because it introduces an exponential increase
in the size of the automaton before the actual algorithm is
applied. Moreover, when more than one automaton are in-
volved, this has to be done up front for all predicates that
occur in all the automata in order to define the common
alphabet. A concrete example of such a blowup is given
in [7, Example 2].

2. Definition of symbolic tree automata

We introduce an extension of tree automata with an ef-
fective encoding of labels by predicates that denote sets of
labels, rather than individual labels. We assume a count-
able background universe B. A predicate ϕ over B is a
finite representation of a subset [[ϕ]]B of B; we write
[[ϕ]] when B is clear from the context. We assume given
an effectively enumerable set of predicates Σ such that,
for each element a ∈ B there is â ∈ Σ such that [[â]] = {a},
�, ⊥ ∈ Σ such that [[�]] = B and [[⊥]] = ∅, and Σ is ef-
fectively closed under Boolean operations: for all ϕ, ψ ∈ Σ ,
we have ϕ ∧ψ ∈ Σ , ϕ ∨ψ ∈ Σ , ¬ϕ ∈ Σ , where [[ϕ ∧ψ]] =
[[ϕ]] ∩ [[ψ]] , [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]] , and [[¬ϕ]] = B \ [[ϕ]] .
We write ϕ ≡ ψ for [[ϕ]] = [[ψ]] . We say that (Σ, [[·]]B)

(or Σ , when [[·]]B is clear from the context) is an effective
Boolean algebra over B. We say that Σ is decidable if the
problem of deciding ϕ ≡ ⊥ for ϕ ∈ Σ is decidable.

Example 1. An example of a decidable effective Boolean
algebra is (LA(x), [[·]]Z) where [[·]]Z is the standard in-
terpretation of integer arithmetic, and LA(x) is an effec-
tively enumerable set of all quantifier free integer-linear
arithmetic formulas, with one fixed free variable x, e.g.,
[[0 < x ∧ x + 1 < 3]] = [[0 < x]] ∩ [[x + 1 < 3]] = {1}. �

In this paper we focus on binary trees. This will keep
the notational overhead at a minimum, while the results
can be generalized to non-binary trees through standard
encoding techniques. T (B) is the smallest set such that
the empty tree ε ∈ T (B) and if a ∈ B and t1, t2 ∈ T (B)

then t = 〈a, t1, t2〉 ∈ T (B), where a is the label of t , de-
noted label(t), t1 is the left subtree of t , denoted left(t), and
t2 is the right subtree of t , denoted right(t).

For example 〈1, 〈−2, ε, 〈3, ε, ε〉〉, 〈4, ε, ε〉〉 ∈ T (Z).

Definition 1. A symbolic tree automaton (STA) A is a tuple
(Σ, Q , Q l, Q r, Δ) where Σ is an effective Boolean alge-

bra called the label theory of A, Q is a finite set of states,
Q l ⊆ Q is a set of leaves, Q r ⊆ Q is a set of roots, and
Δ ⊆ Q × Σ × Q × Q is a finite set of transitions.

We use A as a subscript to identify a component, un-
less A is clear from the context. We write STA(Σ) for an
effectively enumerable set of all STAs over Σ . Let A =
(Σ, Q , Q l, Q r, Δ) ∈ STA(Σ) be fixed. Given a transition
ρ = (p, ϕ, q1, q2) ∈ Δ, let lhs(ρ), γ (ρ), and rhs(ρ), de-
note, respectively, the left-hand-side p, the guard ϕ , and
the right-hand-side (q1, q2) of ρ . We use q̄ as an abbrevia-
tion for (q1, q2).

Definition 2. The language of A for q ∈ Q , denoted by
L (A, q), is the smallest subset of T (B) such that: if
q ∈ Q l then ε ∈ L (A, q); if (q, ϕ, q1, q2) ∈ Δ,
a ∈ [[ϕ]] , and, for i ∈ {1, 2}, ti ∈ L (A, qi), then 〈a, t1, t2〉 ∈
L (A, q). The language of A is L (A) def= ⋃

q∈Q r L (A, q).

Two STAs A and B are equivalent, denoted A ≡ B , when
L (A) = L (B).

Let ⊥STA(Σ)
def= (Σ, ∅, ∅, ∅, ∅). Thus L (⊥STA(Σ)) = ∅. The

following example illustrates a representation of valid Uni-
code character sequences as an STA that uses UTF16 en-
coding of surrogate pairs.1

The particular feature of the representation is that the
trees preserve the length of the original Unicode strings as
the length of the rightmost branch. The leftmost branch
from any node in the tree is either the node itself when
the node is not a surrogate, or a surrogate pair otherwise,
and encodes thus a single Unicode symbol.

Example 2. Let BV16 stand for quantifier free 16-bit bit-
vector arithmetic; BV16 is isomorphic to quantifier free
integer linear arithmetic modulo 216. We use a single fixed
free variable x in predicates ϕ over BV16, thus [[ϕ]] is the
set of all values a such that ϕ[x/a] is true. Let

HighSurr
def= 0xD800≤ x ≤ 0xDBFF,

LowSurr
def= 0xDC00≤ x ≤ 0xDFFF,

Let A = (BV16, {qok, qls, qε}, {qok, qε}, {qok}, Δ), where

Δ =
⎧⎨
⎩

(qok,¬LowSurr ∧ ¬HighSurr,qε,qok),

(qok,HighSurr,qls,qok),

(qls, LowSurr,qε,qε)

⎫⎬
⎭

For example, the tree

0x266D
ε 0xD834

0xDD35 0x266E
ε ε ε ε

is in L (A) and encodes the Unicode string "	c
" of
musical symbols, where c is the symbol “cut time”

1 Complete Unicode alphabet has over one million characters, UTF16
encoding is used to encode the alphabet with 16-bit bit-vectors, where
surrogate pairs are used for encoding characters in the upper Unicode
range.

Download English Version:

https://daneshyari.com/en/article/428893

Download Persian Version:

https://daneshyari.com/article/428893

Daneshyari.com

https://daneshyari.com/en/article/428893
https://daneshyari.com/article/428893
https://daneshyari.com

