
Information Processing Letters 115 (2015) 425–430

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Using variable automata for querying data graphs

Domagoj Vrgoč a,b,∗
a University of Edinburgh, Scotland, United Kingdom
b Pontificia Universidad Católica de Chile, Vicuna Mackenna 4860, Edificio San Agustin, Macul, Santiago, Chile

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 June 2014
Received in revised form 27 October 2014
Accepted 28 October 2014
Available online 20 November 2014
Communicated by Jef Wijsen

Keywords:
Databases
Query languages
Variable automata

Thus far query languages for graphs databases that, in addition to navigating the structure 
of a graph, also consider data values encountered along the paths they traverse, seem 
to exhibit somewhat dual behaviour in terms of the efficiency of their query evaluation 
problem. Namely, their combined complexity is either tractable, or are at least PSpace-hard. 
In this paper we show how to use the model of variable automata to get a query language 
with intermediate (NP-complete) combined complexity of query evaluation. Since variable 
automata are incomparable in terms of expressive power with previously studied querying 
mechanisms for data graphs we also show how to join their capabilities with the ones of 
previously used languages without an increase in the complexity of query evaluation, thus 
getting the best of both worlds.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Querying graph databases has become an important 
topic in the database community, fuelled by applications 
such as social networks, biological databases and the Se-
mantic Web. There are now several vendors offering graph 
database systems [4,12] and a growing body of research 
literature on the subject (for a survey see [1]). In all 
of these applications the data is naturally modelled by 
graphs, with nodes representing entities in the database 
and edges representing various connections these entities 
can form. For example if we are describing a social net-
work it is natural to represent users by nodes, with edges 
symbolizing the connection between two users, such as 
friends, co-workers, relatives and so on. In this model a 
node carries information about a specific user in the usual 
(attribute name, attribute value) format, where the name 
of the attribute is drawn from a finite alphabet of labels, 
while the attribute value comes from an infinite domain. 
For example we can store information about user’s name, 

* Corresponding author at: Pontificia Universidad Católica de Chile.
E-mail address: domagojvrgoc@gmail.com.

phone number, etc. Furthermore, since nodes can form dif-
ferent types of connections, it is usual to assign labels to 
the edges connecting them, as well as some additional in-
formation such as the time of the edge creation, or how 
the edge was modified.

Over the years several querying mechanisms for graph 
data have been developed, both for navigating graphs and 
for dealing with the stored data, and their evaluation prop-
erties were studied in detail. Most notable among these 
are regular path queries, or RPQs [3] and their extensions 
with conjunction and two-way navigation [2], or the abil-
ity to define more complex graph patterns [13]. All of them 
have in common the fact that they query the graph struc-
ture without the ability to access data values stored in the 
nodes. More recently languages that in addition to topol-
ogy also consider data values have been studied [9,11]. For 
both these classes of languages one of the main concern is 
the efficiency of their query evaluation – that is the prob-
lem of checking, given a data graph, a query and a tuple of 
nodes, if this tuple belongs to the answer of the query on 
this given graph. This problem is often referred to as the 
combined complexity of query evaluation. When the query 
itself is fixed and not considered as part of the input we 
are talking about data complexity. By now the consensus 

http://dx.doi.org/10.1016/j.ipl.2014.10.019
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.10.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:domagojvrgoc@gmail.com
http://dx.doi.org/10.1016/j.ipl.2014.10.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.10.019&domain=pdf


426 D. Vrgoč / Information Processing Letters 115 (2015) 425–430

is that while navigational languages can be designed with 
very low combined complexity in mind, for languages that 
mix topological properties with data features the problem 
is either tractable, or at least PSpace-hard.

Indeed, it appears that models that use memory, such 
as register automata and their expression equivalent [11], 
make the query evaluation PSpace-hard, while XPath-based 
approaches bring the complexity down to PTime, but lose 
the ability to store values into separate memory locations. 
However, the panorama of languages that mix topology 
and data is far from being completely understood and it 
therefore makes sense to look for other query formalisms 
that might lead to languages with lower complexity of 
query evaluation while still retaining some of the desirable 
properties related to manipulation of memory locations.

One such model that was not considered previously 
for querying graphs is that of variable automata. These 
were originally introduced in [6] to reason about words 
over (countable) infinite alphabets, but here we show how 
they can also be used to define a graph query language 
with NP-complete combined complexity. We also show 
that data complexity remains NL-complete, matching the 
bound for RPQs. Furthermore, since variable automata are 
incomparable in terms of expressive power with the well 
established model of register automata, we show how the 
two can be joined together to get a graph querying for-
malism whose evaluation complexity (both data and com-
bined) does not exceed that of register automata, while at 
the same time giving them more expressive power.

Remark. Note that some of the results presented here 
were announced previously in [10].

Organization. We review notation in Section 2. In Sec-
tion 3 we introduce variable automata and show how they 
can be used to query graph databases, while in Section 4
we extend register automata in a way that subsumes prop-
erties definable by variable automata. We conclude in Sec-
tion 5.

2. Preliminaries

Let Σ be a finite alphabet and D a countable infinite 
set of data values.

Definition 2.1. A data graph (over Σ ) is pair G = (V , E), 
where

• V is a finite set of nodes;
• E ⊆ V × Σ ×D× V is a set of edges where each edge 

contains a label from Σ and a data value from D.

We write V (G) and E(G) to denote the set of nodes 
and edges of G , respectively. An edge e from a node u to 
a node u′ is written in the form (u, 

(a
d

)
, u′), where a ∈ Σ

and d ∈ D. We call a the label of the edge e and d the 
data value of the edge e. We write D(G) to denote the set 
of data values in G . A sample data graph is given in Fig. 1.

A path from a node v to a node v ′ in G is a sequence 
π = v1

(a1
d1

)
v2

(a2
d2

)
v3

(a3
d3

) · · · vn
(an

dn

)
vn+1 such that each 

(vi, 
(ai

di

)
, vi+1) is an edge for each i ≤ n, and v1 = v and 

vn+1 = v ′ .

Fig. 1. A graph database with data values.

Each path π defines a data word w(π) = (a1
d1

)(a2
d2

)(a3
d3

) · · ·(an
dn

)
. Data words are commonly studied in XML litera-

ture [5], where they are used to describe paths in XML 
trees. We use them in a similar manner to describe paths 
in data graphs.

Remark Note that we use the model where both labels 
and data values appear in the edges. Several different ap-
proaches have been used in the past, for example with 
data values in the nodes and labels on edges [11], or 
both labels and data values in nodes and edges [12], but 
it is easily shown that all of these variations are es-
sentially equivalent [14]. Our choice is dictated by the 
ease of notation primarily, as it identifies paths with data 
words.

3. Variable automata as a graph language

In this section we show how to use the model of vari-
able automata introduced in [6] to query graph databases. 
These automata can be viewed as less procedural than 
register automata [8]; in fact they can be seen as NFAs 
with a guess of values to be assigned to variables, with 
the run of the automaton verifying correctness of the 
guess. Originally they were defined on words over in-
finite alphabets [6], but it is straightforward to extend 
them to the setting of data words. In what follows we 
define variable automata as a query language, give ex-
amples of some queries one can ask using them and 
show that their query evaluation problem can be solved 
in NP-time.

We begin by defining variable automata formally.

Definition 3.1. Let Σ be a finite alphabet and D a count-
able infinite domain of data values. We will also assume 
that we have a countable set V of variables. A variable 
finite automaton (or VFA for short) over Σ × D is a pair 
A = (Γ, A), where A is an NFA over the alphabet Σ × Γ , 
and Γ = C ∪ X ∪ {�} such that:

• C ⊆D is a finite set of data values called constants
• X ⊆ V is a finite set of bound variables, and
• � is a symbol for the free variable.

Next we define when a VFA accepts a data word w =
w1 w2 . . . wn ∈ (Σ ×D)∗ . For each letter u = (a

d

)
in Σ ×D, 



Download English Version:

https://daneshyari.com/en/article/428894

Download Persian Version:

https://daneshyari.com/article/428894

Daneshyari.com

https://daneshyari.com/en/article/428894
https://daneshyari.com/article/428894
https://daneshyari.com

