
Information Processing Letters 115 (2015) 447–452

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Impossibility of gathering, a certification

Pierre Courtieu b, Lionel Rieg a,b, Sébastien Tixeuil d,e,f,1, Xavier Urbain a,b,c,∗
a École Nat. Sup. d’Informatique pour l’Industrie et l’Entreprise (ENSIIE), Évry, F-91025, France
b

Cédric – Conservatoire National des Arts et Métiers, Paris, F-75141, France
c LRI, CNRS UMR 8623, Université Paris-Sud, Orsay, F-91405, France
d Sorbonne Universités, UPMC Univ. Paris 06, UMR 7606, LIP6, F-75005, Paris, France
e CNRS, UMR 7606, LIP6, F-75005, Paris, France
f Institut Universitaire de France, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 May 2014
Received in revised form 5 October 2014
Accepted 4 November 2014
Available online 11 November 2014
Communicated by M. Yamashita

Keywords:
Analysis of algorithms
Automatic theorem proving
Computational geometry
Distributed computing
Theory of computation

Recent advances in Distributed Computing highlight models and algorithms for autonomous 
swarms of mobile robots that self-organise and cooperate to solve global objectives. The 
overwhelming majority of works so far considers handmade algorithms and proofs of 
correctness.
This paper builds upon a previously proposed formal framework to certify the correctness 
of impossibility results regarding distributed algorithms that are dedicated to autonomous 
mobile robots evolving in a continuous space. As a case study, we consider the problem 
of gathering all robots at a particular location, not known beforehand. A fundamental (but 
not yet formally certified) result, due to Suzuki and Yamashita, states that this simple task 
is impossible for two robots executing deterministic code and initially located at distinct 
positions. Not only do we obtain a certified proof of the original impossibility result, we 
also get the more general impossibility of gathering with an even number of robots, when 
any two robots are possibly initially at the same exact location.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Distributed Computing community, motivated by 
the variety of tasks that can be performed by autonomous 
robots and their complexity, started recently to propose 
formal models for these systems, and to design and prove 
protocols in these models. The seminal paper by Suzuki 
and Yamashita [1] proposes a robot model, two execution 
models, and several algorithms (with associated correct-
ness proofs) for gathering and scattering a set of robots. 

* Corresponding author at: École Nat. Sup. d’Informatique pour l’Indus-

trie et l’Entreprise (ENSIIE), Évry, F-91025, France.
E-mail addresses: Pierre.Courtieu@cnam.fr (P. Courtieu), 

Lionel.Rieg@ensiie.fr (L. Rieg), Sebastien.Tixeuil@lip6.fr (S. Tixeuil), 
Xavier.Urbain@ensiie.fr (X. Urbain).

1 This author is supported in part by LINCS.

In their model, robots are identical and anonymous (they 
execute the same algorithm and they cannot be distin-
guished using their appearance), robots are oblivious (they 
have no memory of their past actions) and they have nei-
ther a common sense of direction, nor a common handed-
ness (chirality). Furthermore, robots do not communicate 
in any explicit way. They have however the ability to sense 
the environment and see the position of the other robots. 
Also, robots execute three-phase cycles: Look, Compute and 
Move. During the Look phase, robots take a snapshot of the 
other robots’ positions. The collected information is used in 
the Compute phase in which robots decide to move or to 
stay idle. In the Move phase, robots may move to a new lo-
cation computed in the previous phase. The two execution 
models are denoted by (using recent taxonomy [2]) FSYNC, 
for fully synchronous, and SSYNC, for semi-synchronous. In 
the SSYNC model, an arbitrary non-empty subset of robots 

http://dx.doi.org/10.1016/j.ipl.2014.11.001
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.11.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:Pierre.Courtieu@cnam.fr
mailto:Lionel.Rieg@ensiie.fr
mailto:Sebastien.Tixeuil@lip6.fr
mailto:Xavier.Urbain@ensiie.fr
http://dx.doi.org/10.1016/j.ipl.2014.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.11.001&domain=pdf


448 P. Courtieu et al. / Information Processing Letters 115 (2015) 447–452

execute the three phases synchronously and atomically. In 
the FSYNC model, all robots execute the three phases syn-
chronously.

One of the benchmarking [2] problems for mobile 
robots is that of Gathering. Regardless of their initial po-
sitions, robots have to move in such a way that they 
eventually stand on the same location, not known be-
forehand, and remain there thereafter. A key impossibility 
result for gathering is due to Suzuki and Yamashita [1]: 
two robots initially located at distinct positions may never 
gather if they execute a deterministic algorithm. This re-
sult is fundamental because any weakening of the initial 
system hypotheses (e.g. anonymity, obliviousness, common 
sense of direction) makes the problem solvable [3].

Related works Most related to our concern are recent 
approaches to mechanising the algorithm design or the 
proof of correctness in the context of autonomous mobile 
robots [4–8]. Model-checking proved useful to find bugs in 
existing literature [6] and assess formally published algo-
rithms [5,6], in a simpler setting where robots evolve in 
a discrete space where the number of possible positions is 
finite. However, no method exists to derive impossibility 
results using model checking. Automatic program synthe-
sis (for the problem of perpetual exclusive exploration in a 
ring-shaped discrete space) is due to Bonnet et al. [4], and 
could be used to prove impossibility in a particular set-
ting (by a side effect, if no algorithm can be generated), 
yet it exhibits important limitations for studying the gath-
ering problem we focus on here. First, the authors consider 
only the discrete space setting (with a ring shape). Second, 
their approach is brute force (it generates every possible 
algorithm in a particular setting, regardless of the problem 
to solve). Third, the generator is limited to configurations 
where (i) a location can only host one robot (so, gather-
ing cannot be expressed), and (ii) no symmetry appears 
(which eludes all interesting cases for studying gathering). 
The approach was recently refined by Millet et al. [8] for 
the problem of gathering in a discrete ring network. Yet, 
the tools used prevent algorithm synthesis for more than 
three robots in a (small) fixed size ring. So, none of those 
approaches is suitable for positions requiring real numbers, 
or for establishing results that are valid for any number of 
robots and any network size.

Developed for the Coq proof assistant,2 the Pactole 
framework enabled the use of high-order logic to certify 
impossibility results [7] for the problem of convergence: 
for any positive ε, robots are required to reach locations 
that are at most ε apart. Of course, an algorithm that 
solves gathering also solves convergence, but the converse 
is not true. As convergence is solvable in the usual set-
ting, the impossibility results that can be obtained involve 
Byzantine robots (that is, robots that may exhibit arbitrary, 
and possibly malicious, behaviours). The impossibility re-
sults obtained in previous work using Coq [7] show that 
convergence is impossible if more than half of the robots 
are Byzantine in the FSYNC model (or more that one third 
of the robots are Byzantine in the SSYNC model). These re-

2 http :/ /coq .inria .fr.

sults cannot be directly reused for the case of “Gathering 
Impossibility” for several reasons. First, they involve the 
active participation of Byzantine robots to destabilise the 
correct ones, while the gathering problem involves only 
correct robots. Second, the possible positions robots may 
occupy are encoded using rational numbers, while posi-
tions in the original model actually use real numbers.

Our contribution In this paper, we consider the construc-
tion of a formal proof for the fundamental impossibility 
result of Suzuki and Yamashita [1], for two robots exe-
cuting deterministic code and initially located at distinct 
positions. Our proof builds upon the previously initiated 
Pactole framework [7] to use actual real numbers as lo-
cations instead of rational numbers, and refines the def-
initions of executions (including scheduling assumptions) 
to enable the study of executions involving only correct 
processes. Not only do we obtain a certified proof of the 
original impossibility result of Suzuki and Yamashita, we 
also get the more general impossibility result with an even 
number of robots, when any two robots are possibly ini-
tially at the same exact location.

2. Preliminaries

2.1. Certification and the Coq proof assistant

To certify results and to guarantee the soundness of 
theorems, we use the Coq proof assistant, a Curry-Howard 
based interactive prover enjoying a trustworthy kernel. 
The Pactole formal model is thus developed in Coq’s for-
mal language, a very expressive λ-calculus: the Calculus 
of Inductive Constructions (CIC) [9]. In this (functional) lan-
guage, datatypes, objects, algorithms, theorems and proofs 
can be expressed in a unified way, as terms. λ-abstraction 
is denoted by fun x:T ⇒ t, and application is denoted 
by t u. Curry-Howard isomorphism associates proofs and 
programs, types and logical propositions. Writing a proof 
of a theorem in this setting amounts to building (interac-
tively in most cases but with the help of tactics) a term the 
type of which corresponds to the theorem statement. As a 
term is indeed a proof of its type, ensuring the soundness 
of a proof thus simply consists in type-checking a λ-term.

Coq has already been successfully employed for vari-
ous tasks such as the formalisation of programming lan-
guage semantics [10,11] or mathematical developments as 
involved as the 4-colours [12] or Feit–Thompson [13] the-
orems. Regarding distributed algorithms, local calculi enjoy 
a formal model with the Coq library Loco [14].

The reader will find in [15] a very comprehensive 
overview and good practices with reference to Coq. De-
veloping a proof in a proof assistant may nonetheless be 
tedious, or require expertise from the user. To make this 
task easier, Pactole proposes a formal model, as well as 
lemmas and theorem, to specify and certify results about 
networks of autonomous mobile robots. It is designed to 
be robust and flexible enough to express most of the va-
riety of assumptions in robots network, for example with 
reference to the considered space: discrete or continuous, 
bounded or unbounded. . . .

http://coq.inria.fr


Download English Version:

https://daneshyari.com/en/article/428898

Download Persian Version:

https://daneshyari.com/article/428898

Daneshyari.com

https://daneshyari.com/en/article/428898
https://daneshyari.com/article/428898
https://daneshyari.com

