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Abstract

The longest increasing circular subsequence (LICS) of a list is considered. A Monte Carlo algorithm to compute it is given which
has worst case execution time O(n3/2 logn) and storage requirement O(n). It is proved that the expected length μ(n) of the LICS
satisfies limn→∞ μ(n)

2
√

n
= 1. Numerical experiments with the algorithm suggest that |μ(n) − 2

√
n | = O(n1/6).
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1. Introduction

The properties of the longest increasing subsequence
(LIS) of a finite sequence of numbers have inspired a
number of research areas in mathematics and computer
science over many decades. As long ago as 1935 Erdös
and Szekeres showed that every sequence of length n

has an increasing subsequence or a decreasing subse-
quence of length about

√
n. It follows immediately that

the expected length of an LIS in a random permuta-
tion of length n is at least 1

2

√
n. That result was the

first in a series of investigations (see [3] for a survey)
that culminated in the seminal paper [5] which obtained
the complete limiting distribution of the length of an
LIS in a permutation of length n chosen uniformly at
random. An important step in this research was taken
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by Baer and Brock [4] who correctly estimated the ex-
pected length to be 2

√
n by computer simulation. Their

work ties in with another aspect of the LIS problem:
to find efficient algorithms for computing the LIS. That
problem was solved by Schensted [12] by a now clas-
sical textbook algorithm (see, e.g., [7,10,11,13]) for
computing an LIS in time O(n logn) based on dynamic
programming, and that algorithm in turn has connec-
tions to the study of Young tableaux. Computing the LIS
has recently gained some practical importance since it
is used in the MUMmer system [8] for aligning whole
genomes. Fredman [9] has shown that the dynamic pro-
gramming algorithm is optimal under the comparison
model.

In this paper we study a variant of the LIS problem.
We shall regard the given sequence as a circular struc-
ture. In other words, we shall allow the LIS to wrap
around if necessary. The longest increasing circular se-
quence (LICS) is defined as the longest increasing sub-
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sequence when wrap-around is permitted. The LICS is
never more than twice as long as the LIS but examples
such as 4,5,6,1,2,3 show that this bound can be at-
tained. Throughout the paper we interpret “increasing”
in the non-strict sense. Strictly increasing sequences can
be found by a minor variation.

Although the LICS problem seems to be a natural ex-
tension of the LIS problem we know of only one paper
that bears upon it. In [2] a (Las Vegas) randomized algo-
rithm was developed to compute the LIS in all windows
of a given span. If applied to a sequence of the form
XX (a sequence X concatenated with itself) then, with
a window span n = |X|, it can compute the LICS of X

in worst case time O(n2) and expected time O(n3/2).
The contribution of the present paper is both practical

and theoretical. Specifically, we give a Monte Carlo ran-
domized algorithm for the LICS problem whose worst
case run-time is O(n3/2 logn) with tiny error probabil-
ity, and storage requirement O(n) which is simple to
program. The algorithm depends on a result (Proposi-
tion 1) that gives a connection between the LIS and
LICS which appears interesting in its own right. Then
we prove that the expected length of the LICS is as-
ymptotic to 2

√
n which, since this is true also for the

LIS, is somewhat surprising. Finally we report on some
numerical evidence that suggests an even tighter result.

The LICS problem can be thought of as a special
case of a class of permutation problems that was intro-
duced in [1]. In this broader framework one is given a
fixed set A of permutations and some input permuta-
tion σ of length n; the task is to compute the longest
subsequence of σ that is order isomorphic to one of the
permutations in A. The ordinary LIS problem is the spe-
cial case that A is the set of identity permutations; the
LICS problem is the case that A is the set of all permu-
tations k+1, k+2, . . . ,m,1,2, . . . , k for some k,m. As
noted in [1], there are only few classes A for which an
O(n logn) algorithm is known.

Besides the fact that circular lists are a natural exten-
sion of linear lists another reason for seeking a solution
to the LICS problem is that genomes of bacteria are
(considered to be) circular [6]; so circular problems do
arise naturally.

2. Review of the LIS algorithm

An important ingredient of our approach is the stan-
dard dynamic programming algorithm to find an LIS. To
make the paper self-contained and to clarify what can be
gleaned from this algorithm we review its operation.

Suppose we are given a sequence X = x1x2 . . . xn.
We scan the sequence term by term and maintain at

every step certain positions t1, t2, . . . , tr . The term xtk

is the value of the least possible ending term in an in-
creasing subsequence of length k in the prefix of the
sequence that has been scanned to this point. Initially
we have r = 0 (and t0 = 0, x0 = −∞, by convention)
indicating that, before the sequence is examined, no in-
creasing subsequences have been identified. Notice that
we shall necessarily have

xt1 � xt2 � · · · � xtr

since, if xtk−1 > xtk , the terminator xtk of an increasing
subsequence of length k will be preceded by the penul-
timate term of that subsequence, and that term will be
a smaller terminator than xtk−1 of an increasing subse-
quence of length k − 1.

When we inspect the term y = xi (which we do for
values i = 1,2, . . . , n in turn) we have to update the po-
sitions t1, t2, . . . , tr . To do this, we locate (using binary
search), the index s for which

xts−1 � y < xts .

If such an index is found then we know that y extends an
increasing sequence of length s − 1 ending at position
ts−1 and that this new sequence of length s has a smaller
terminator than xts ; thus we redefine ts to be i. The only
situation where s cannot be located is the case xtr � y;
this implies that, for the first time, we have encountered
an increasing subsequence of length r +1, so we set tr+1
equal to i and increment r . We also define back pointers
bi by setting bi = ts−1 (or, in the latter case, bi = tr−1).
The back pointers record how xi was established as the
final term of an increasing sequence of length s.

When the entire sequence X has been inspected the
final value of r is the length of the LIS. We can then
reconstruct (in reverse) the LIS itself by following back
pointers from position tr . Indeed, by recording the value
of tr for each of i = 1,2, . . . , n, we can reconstruct an
LIS in any initial segment of X.

Clearly this algorithm takes time O(n logn). No-
tice that the algorithm can equally be used to construct
a longest decreasing subsequence. It can also operate
from right to left if desired.

We note some technical properties of the LIS algo-
rithm. Let t

(i)
1 , t

(i)
2 , . . . denote the values of the variables

t1, t2, . . . at the point that xi has just been processed.
The position i itself will occur among t

(i)
1 , t

(i)
2 , . . . and,

of course, all the other positions of this set will be less
than i. We define si by

t (i)si
= i.

Thus si is the length of the increasing subsequence
that xi created (either for the first time or by having
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