ELSEVIER

Available online at www.sciencedirect.com
ScienceDirect

Information Processing Letters 101 (2007) 78-85

Information
Processing
Letters

www.elsevier.com/locate/ipl

Bottom-up nearest neighbor search for R-trees ™

Moon Bae Song, Kwang Jin Park, Ki-Sik Kong, Sang Keun Lee *

Department of Computer Science and Engineering, Korea University, 5-1, Anam-dong, Seongbuk-Ku, Seoul 136-701, Republic of Korea
Received 10 October 2005; received in revised form 10 April 2006; accepted 14 August 2006
Available online 18 September 2006

Communicated by J. Chomicki

Keywords: R-trees; Nearest neighbor search; Bottom-up search; Databases

1. Introduction

Given query point ¢, finding the nearest neighbor
object, a so-called nearest neighbor (NN) search, is
one of the most important problems in computer sci-
ence, particularly within the database community. As
a general form of these problems, the formal defin-
ition of NN search is the following. A point set P
is a set of points in a d-dimensional data space DS,
P ={po, p1,...,pp|-1}, pi €DSC R?. Given query
point g, the result of the NN searchis NN(g) ={p € P |
Vp' € P: dist(p, q) < dist(p’, ¢)}.

Since 1984, when Guttman proposed his work [2],
R-trees have become the most popular data structure for
indexing multidimensional data for various purposes.
Two different approaches for processing NN queries on
R-trees exist. The first was developed by Roussopoulos
et al. [5]. Owing to its search behavior, it is referred to as
depth-first search (DFS) algorithm in the following. The
second, called best-first search (BFS), was proposed by
Hjaltason and Samet [3]. The BFS algorithm is known
as an optimal NN search algorithm for R-trees. This

* This work was supported in part by MIC & IITA through IT Lead-
ing R&D Support Project.
* Corresponding author.
E-mail address: yalphy @korea.ac.kr (S.K. Lee).

0020-0190/$ — see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.ip1.2006.08.005

means that it visits a node only if necessary. Since the
top—down approaches visit from the root node to leaf
node, the minimum I/O cost per query cannot be smaller
than the height of the R-tree.

In this paper, a new NN search algorithm for R-trees
is proposed, which performs in a bottom-up manner. In
contrast to the two existing algorithms that work in a
top—down manner, the proposed approach starts at the
leaf level and traverses to the Root node. In order to se-
lect a more appropriate leaf node, it exploits in-memory
hash structure in which whole data space is disjointly
partitioned into n x n cells. Each cell contains the point-
ers of leaf nodes that intersect with the cell. The experi-
mental results demonstrate that the proposed NN search
algorithm outperforms existing NN search algorithms
which are based on the R-tree including the existing I/O
optimal algorithm. This is the first work to overcome the
performance limitation of the BFS algorithm.

2. Nearest neighbor search using R-trees

As a d-dimensional extension of BT -tree, the R-tree
was proposed by Guttman [2]. In the data structure,
a geometric object is represented by its minimum
bounding rectangle (MBR). An MBR is minimal ap-
proximation of a geometric object and multidimensional
rectangle R = [I1, u1] X --- X [lg, ug4] in the data space.

M_.B. Song et al. / Information Processing Letters 101 (2007) 78-85 79

mindist(q1,E7)
(@)
Root
E, E,
E; | E; | Es Es | E7 | Es
E; E, Es Es E; Ey
ab’ c d’ ef‘g‘ ’hij k‘lm nap‘
(b)

Fig. 1. An example of R-tree and NN query processing for g1 and ¢».
(a) Points and node extents, (b) the corresponding R-tree.

Every node has between m and M entries (m < M/2)
unless it is the root node. Fig. 1 presents an R-tree for
pointset P ={a, b, ..., p} in which the maximum node
capacity M is 3. Points that are spatially close in space
(e.g., k, I, and m) are clustered in the same leaf node
(E7). Nodes are then recursively grouped together us-
ing this same principle, except for the top level, which
consists of a single root.

Roussopoulos et al. [5] proposed a branch-and-
bound algorithm for NN search in a depth-first manner.
This algorithm is referred to as the depth-first search
(DFS). Three pruning heuristics are suggested, based
on two distance metrics (mindist and minmaxdist) to
discard the candidate nodes, so that the number of disk
accesses can be minimized. mindist is the minimum
possible distance between the query point and a node
(or MBR R), while minmaxdist is the minimum of max-
imum possible distances from the query point to a face
of the MBR. Conceptually speaking, mindist and min-
maxdist provide a lower- and an upper-bound on the
actual distance of object O from query point ¢, respec-
tively. Based on these metrics, Roussopoulos et al. [5]
proposed three pruning heuristics: PH1, PH2, and PH3.
In [1], Cheung and Fu have observed that only the PH3
is sufficient to maintain the same number of pruned
nodes. This implies that minmaxdist is not necessary
for pruning. The DFS algorithm visits nodes with min-
imum mindist order from the Root. In the example of
query point g in Fig. 1, after visiting the root node,

the minimum mindist node (e.g., E1) from g is visited.
The process is repeated recursively until the leaf node
Es contains the potential NN f. When backtracking to
the previous level (node E1), remaining entries (E£3 and
Ey4) are easily pruned by PH3. The actual NN m can be
found, by backtracking again to the root level and fol-
lowing the search path E3 E7. In summary, the order of
nodes visited in the DFS algorithm for query point g is
Root, E1, Es, E>, E7. The DFS algorithm is proven to
be sub-optimal [4]. This means that it visits more nodes
than actually necessary.

Given a query point ¢, let VC(g) be the vicin-
ity circle of query point g that centers at the query
point g and has radius equal to mindist(q, NN(q)). As
proven in [4], an optimal NN search algorithm should
only visit the nodes intersecting with the vicinity cir-
cle VC. In [3], Hjaltason and Samet proposed the best-
first search (BFS) algorithm, which achieves optimal
I/O performance. The algorithm maintains a priority
queue H of the entries visited so far in ascending or-
der by mindist. Similar to DFS, BFS begins from the
root and insert all entries in the node into H. In the ex-
ample of Fig. 1, it inserts all entries (e.g., £1 and E»)
from the Root node into H. The priority queue is then
H = {{E>, mindist(q1, E2)), (E1, mindist(q1, E1))}. At
each step, the first item in the priority queue is selected
for visiting, and all its entries are inserted into H. The
algorithm follows the same procedure until a data object
is visited. Therefore, the order of nodes visited in the
BFS algorithm for query point g is Root, E1, E>, E7
(without visiting Es). The BFS algorithm proposed by
Hjaltason and Samet is known as the optimal NN search
algorithm for R-trees.

3. Bottom-up search (BUS) algorithm

The performance limitation of conventional top—
down algorithms is the height of the tree resulting from
the characteristics of the algorithm. This limit should be
overcome, in order to support high performance data-
base applications. This increasing demand leads to the
creation of a new search algorithm.

3.1. Hash structure

In order to make the bottom-up approach possible,
the conventional R-trees are required to be modified
slightly. In this paper, an in-memory hash data structure
to support the proposed bottom-up search algorithm is
presented. Definitions 1 and 2, which follow, describe
the basic concept of the hash and cell. For the simplic-
ity of presentation, it is assumed that d = 2 in the rest of

Download English Version:

https://daneshyari.com/en/article/428905

Download Persian Version:

https://daneshyari.com/article/428905

Daneshyari.com

https://daneshyari.com/en/article/428905
https://daneshyari.com/article/428905
https://daneshyari.com

