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An essential problem in the design of holographic algorithms is to decide whether 
the required signatures can be realized under a suitable basis transformation (SRP). 
For holographic algorithms with matchgates on domain size 2, [1,2,4,5] have built a 
systematical theory. In this paper, we reduce SRP on domain size k ≥ 3 to SRP on domain 
size 2 for holographic algorithms with matchgates on bases of rank 2. Furthermore, we 
generalize the collapse theorem of [3] to domain size k ≥ 3.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

L. Valiant [10] introduced holographic algorithms with 
matchgates. Computation in these algorithms is expressed 
and interpreted through a choice of linear basis vec-
tors in an exponential “holographic” mix. Then the ac-
tual computation is carried out, via the Holant Theorem, 
by the Fisher–Kasteleyn–Temperley algorithm for counting 
the number of perfect matchings in a planar graph. This 
methodology has produced polynomial time algorithms for 
a variety of problems. No polynomial time algorithms were 
known for any of these problems, and some minor varia-
tions are known to be NP-hard.

For example, Valiant showed that the restrictive SAT 
problem �7Pl-Rtw-Mon-3CNF (counting the number of sat-
isfying assignments of a planar read-twice monotone 3CNF 
formula, modulo 7) is solvable in P [11]. The same count-
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ing problem �Pl-Rtw-Mon-3CNF without mod 7 is known 
to be �P-complete and the problem mod 2 is ⊕P-complete. 
The surprising tractability mod 7 is due to the unexpected 
existence of some basis transformations for matchgate sig-
natures.

Following holographic algorithms with matchgates, Cai, 
Lu and Xia gave holographic algorithms with Fibonacci 
gates in [6]. To build the dichotomy theorems of counting 
problems, some other holographic algorithms are intro-
duced. In the important results about the counting prob-
lems that are achieved recently, these holographic algo-
rithms played important roles [7–9]. The reason that these 
algorithms are called holographic algorithms is that they 
all use holographic reduction between two problems that 
agree on the output for every input. This shows that holo-
graphic algorithms can prove not only tractability, but also 
hardness. In the following of the present paper, we prove 
our results in the framework of holographic algorithms 
with matchgates although there is actually very little de-
pendence on matchgates in our proof (this is pointed out 
by the referee).

For a general CSP-type counting problem, one can as-
sume there is a natural parameter k, called its domain 
size. This is the range over which variables take values. 
For example, Boolean CSP problems all have domain size 2. 
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A k-coloring problem on graphs has domain size k. In holo-
graphic algorithms with matchgates one considers a linear 
transformation, which can be expressed as a 2� × k matrix 
M = (α1, α2, · · · , αk). This is called a basis of k compo-
nents, and � is called the size of the basis.3 A holographic 
algorithm is said to be on domain size k if the respec-
tive signatures are realized by matchgates using a basis 
of k components. When designing a holographic algorithm 
for any particular problem, an essential step is to decide 
whether there is a linear basis for which certain signatures 
of both generators and recognizers can be simultaneously 
realized. This is called Simultaneous Realizability Problem 
(SRP).

For SRP of holographic algorithms with matchgates on 
domain size 2, a systematic theory has been built in [1,2,
4,5]. Recently, Valiant gave polynomial time algorithms for 
some interesting problems by holographic algorithms on 
2 × 3 bases in [12], i.e. the domain size is 3. To understand 
the power of holographic algorithms, we need to consider 
signatures on domain size k ≥ 3. In the present paper, we 
give a method to reduce SRP on domain size k ≥ 3 to SRP 
on domain size 2 if the signatures are realized on a basis 
of rank 2.

Obviously, utilizing bases of a higher size is always a 
theoretic possibility which may allow us to devise more 
holographic algorithms. But Cai and Lu proved a surpris-
ing result for holographic algorithms with matchgates on 
domain size 2 in [3]: Any holographic algorithms on do-
main size 2 and a basis of size � ≥ 2 which employs at 
least one non-degenerate generator can be simulated on 
a basis of size 1. This is the collapse theorem for holo-
graphic algorithms with matchgates on domain size 2. In 
[6], the collapse theorem for holographic algorithms with 
Fibonacci gates are given in similar. In this paper, we give 
a collapse theorem for holographic algorithms with match-
gates on a 2� × k basis M , where M has rank 2.

The above results are proved by ruling out a trivial case, 
which happens when all the recognizers or generators are 
degenerate. Holographic algorithms which only use degen-
erate recognizers or generators are trivial [3].

2. Background

In this section, we review some definitions and results. 
More details can be found in [1,2,4,10,11].

Let G = (V , E, ω) be a weighted undirected planar 
graph, where ω assigns edge weights. A generator (resp. 
recognizer) matchgate Γ is a tuple (G, X) where X ⊆ V is 
a set of external output (resp. input) nodes. The external 
nodes are ordered counterclockwise on the external face.

For a matchgate (G, X), let PerfMatch(G − Z) be the 
sum, over all perfect matchings M of G − Z , of the prod-
uct of the weights of matching edges in M (If all weights 
are 1, this is the number of perfect matchings.), where Z
is the subset of the output nodes having the characteristic 

3 Following [10], to allow greater flexibility in the design of holographic 
algorithms, a basis here may not be linearly independent, e.g., when � = 1, 
k = 3. However to be applicable to matchgates, the number of rows must 
be a power of 2.

sequence χZ = i1i2 · · · in , G − Z is the graph obtained from 
G by removing Z and its adjacent edges.

Each matchgate is assigned a standard signature. A gen-
erator Γ with n output nodes is assigned a standard sig-
nature G = (Gi1 i2···in ), i1, i2, · · · , in ∈ {0, 1}, where

Gi1i2···in = PerfMatch(G − Z).

G can be viewed as a column vector of dimension 2n .
Similarly, a recognizer Γ ′ with n input nodes is as-

signed a standard signature R = (Ri1 i2···in ), i1, i2, · · · , in ∈
{0, 1}, where

Ri1i2···in
= PerfMatch

(
G ′ − Z

)
.

R can be viewed as a row vector of dimension 2n .
Generators and recognizers are essentially the same as 

far as their standard signatures are concerned. The distinc-
tion is how they transform with respect to a basis trans-
formation over some field (the default is C).

A basis M on domain size k is a 2� × k matrix 
(α1, α2, · · · , αk), where αi has dimension 2� (size �). Under 
a basis M , we can talk about the signature of a matchgate 
after the transformation.

Definition 2.1. A generator Γ has signature G (written as 
a column vector) under basis M iff M⊗nG = G is the stan-
dard signature of the generator Γ .

Definition 2.2. A recognizer Γ ′ has signature R (written as 
a row vector) under basis M iff RM⊗n = R where R is the 
standard signature of the recognizer Γ ′ .

Definition 2.3. A column vector G (resp. a row vector R) 
is realizable over a basis M iff there exists a generator 
Γ (resp. a recognizer Γ ′) such that G (resp. R) is the 
signature of Γ (resp. Γ ′) under basis M . They are simul-
taneously realizable if they are realizable over a common 
basis.

A matchgrid Ω = (A, B, C) is a weighted planar graph 
consisting of a disjoint union of: a set of g genera-
tors A = (A1, A2, · · · , Ag), a set of r recognizers B =
(B1, B2, · · · , Br), and a set of f connecting edges C =
(C1, C2, · · · , C f ), where each Ci edge has weight 1 and 
joins an output node of a generator with an input node 
of a recognizer, so that every input and output node in ev-
ery constituent matchgate has exactly one such incident 
connecting edge.

Let G(Ai, M) be the signature of generator Ai under 
the basis M and R(B j, M) be the signature of recognizer 
B j under the basis M . Let G = ⊗g

i=1 G(Ai, M) and R =⊗r
j=1 R(B j, M) be their tensor product, then Holant(Ω) is 

defined to be the contraction of these two product tensors 
(the sum over all indices of the product of the correspond-
ing values of G and R), where the corresponding indices 
match up according to the f connecting edges in C .
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