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This paper addresses the problem of storing an ordered list using a red-black tree, where 
node keys can only be expressed relative to each other. The insert and delete operations in 
a red-black tree are extended to maintain the relative key values. The extensions rely only 
on relative keys of neighboring nodes, adding constant overhead and thus preserving the 
logarithmic time complexity of the original operations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Red-black trees [1,2] are data structures which pro-
vide a logarithmic time bound for retrieving, inserting and 
deleting a node from an ordered list based on its key. 
The key of a node is usually stored as an absolute value, 
allowing to directly compare the keys of two arbitrary 
nodes in the tree. In some cases, however, one may need 
to store the key values relative to other keys in the tree 
[3]. If storing both relative and absolute keys is not pos-
sible (e.g. due to memory limitations), then one must be 
able to reconstruct the absolute keys from the relative 
keys. The relative keys must therefore be maintained dur-
ing any operation which modifies the tree structure. This 
paper extends the insertion and deletion operations in a 
red-black tree to maintain the relative node keys, while 
preserving the logarithmic time complexity of the original 
operations.
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2. Preliminaries

Let n be a node in a list and a(n) its absolute key value. 
Let (n1, n2, . . . , nN) be a list of N nodes ordered by their 
keys, i.e. ∀i : 1 ≤ i < N : a(ni) ≤ a(ni+1). We use a red-black 
tree as an underlying data structure for the ordered list. 
Given a particular tree we define:

• parent(n) is the parent of node n (if it exists).
• left(n) is the left child of node n (if it exists).
• right(n) is the right child of node n (if it exists).
• root is the root node of the tree.
• r(n) is the relative key value of node n, defined as fol-

lows:

a
(
left(n)

) = a(n) − r
(
left(n)

)
(1)

a
(
right(n)

) = a(n) + r
(
right(n)

)
(2)

Note that the root is neither a left nor a right child, so its 
relative key is not defined. The relative key representation 
is illustrated in Fig. 1.
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Fig. 1. Example of storing an ordered list (2, 3, 4, 5, 6, 9, 11) using a red-
black tree with relative keys. The numbers inside and outside the nodes 
represent r(n) and a(n) values, respectively.

We will use the shorthand notation:

isLeft(n) ≡ n = left
(
parent(n)

)

isRight(n) ≡ n = right
(
parent(n)

)

isRoot(n) ≡ n = root

3. Design

For each node n (with exception of the root) we only 
store its relative key r(n). Let n’s root path be the shortest 
path between the root and node n. Assuming we know the 
absolute key of the root node, we can compute the abso-
lute key a(n) for any node n by starting at the root and 
accumulating the relative keys along its root path accord-
ing to (1) and (2). We store and maintain the absolute key 
of the root node in the variable aRoot.

When inserting or deleting nodes in our red-black tree 
we need to maintain the relative keys stored in the nodes 
in such a way that after performing the operation the root 
paths for all nodes will have the same value as they had 
before the operation. Let p(n, t) be the value of the root 
path of node n in tree t , computed recursively according to 
(1) and (2). Let T and T ′ denote the tree before and after 
performing an insert or delete operation, respectively. For 
both operations we will need to prove that the following 
invariant is maintained:

∀n ∈ T ∩ T ′ : p
(
n, T ′) = p(n, T ) = a(n). (3)

Note that (3) must hold only for nodes which are in the 
tree before and after the operation (i.e. we can exclude the 
inserted or deleted node). For the inserted node n we must 
have p(n, T ′) = a(n). For nodes which are not in the tree 
we assume that any predicate on them holds, i.e.

∀x, T , P : x /∈ T ⇒ P (x, T ) ≡ true (4)

where x is a node, T is a tree, and P is a predicate.

4. Insert

Inserting a value into a red-black tree involves the fol-
lowing steps [1,2]:

1. find a leaf position for inserting the value,
2. add a new leaf node,
3. balance the tree.

Fig. 2. Instances of rotation operations when isLeft(a) holds. The “less than 
a” subtree contains nodes with smaller absolute keys than a(a). Node x
may or may not exist. Notice that a, b, x and y are labels, rather than 
relative keys in Fig. 1.

Step 1 traverses the tree looking for the right position 
to insert a new node for the inserted value. While travers-
ing the tree the values of the root paths can be computed 
by accumulating the relative keys stored in the nodes ac-
cording to (1) and (2). Adding a leaf node in step 2 does 
not impact the relative keys of any other nodes in the 
tree. Therefore, relative keys do not need to be adapted 
in steps 1 and 2.

Step 3 relies on two rotation operations, rotateLeft() and 
rotateRight(), to rebalance the tree. During these opera-
tions, the relative position of nodes in the tree is changed, 
and consequently the relative keys of the affected nodes 
need to be adapted. In this section we show how to ex-
tend these two operations to maintain invariant (3).

4.1. Rotate left

In our red-black tree we store only the relative keys in 
the nodes, which satisfy (1) and (2). Therefore, to main-
tain invariant (3), after any operation which modifies the 
tree structure by adding, removing or rotating nodes, the 
relative keys must be updated. We distinguish three cases, 
depending on whether (i) a is a left child, (ii) a is a right 
child, or (iii) a is the root.

4.1.1. Case: a is the left child of its parent
The rotateLeft(a) operation when isLeft(a) is illustrated 

in Fig. 2. The original rotateLeft(a) operation can be defined 
in terms of the following pre and post condition, using no-
tation in [4]:

{P }
rotateLeft(a);
{Q } (5)

where

P : a = left(y) ∧ b = right(a) ∧ x = left(b)

Q : a = left(b) ∧ b = left(y) ∧ x = right(a)
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