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We present an algorithm that estimates the number of connected components of a graph 
over n vertices within an additive error of εn in (sublinear) time O ( 1

ε2 log( 1
ε )). A connected 

component C is the maximal subset of nodes of an undirected graph G such that for any 
two nodes in C there is path connecting. We consider graphs without multiple edges. 
The Connected Component Problem is well-known and amongst the first topics taught in 
graph theory. The number of connected components can be used to calculate the weight 
of the minimum spanning tree [1]. Moreover, the study of connected components finds 
its application in Connected-component labelling, which is used in computer vision. An 
algorithm runs in sublinear time if its running time is o(n) for an input of size n. So far, 
the best known algorithm was provided by [1]. Their running time is O (dε−2 log( d

ε )) where 
d is the average degree.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be an undirected graph with n nodes, 
without multiple edges. G may have self-loops. A con-
nected component C is the maximal subset of nodes of 
an undirected graph G such that for any two nodes in 
C there is path connecting them. It is well-known that 
the problem of finding the number of connected compo-
nents can be solved in time O (|V | +|E|) using breadth-first 
search (see [2], for example). In this paper we present a 
sublinear-time algorithm which estimates the number of 
connected components of G within an additive error of 
εn in time O ( 1

ε2 log( 1
ε )). So far, the best known sublinear-

time algorithm was provided by [1]. Their running time is 
O (dε−2 log(d/ε)) where d is the average degree. Note that 
our result is independent of the degree of the graph.

The Connected Component Problem is well-known and 
amongst the first topics taught in graph theory. The num-
ber of connected components can be used to calculate 
the weight of the minimum spanning tree [1]. Moreover, 
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the study of connected components finds its application 
in Connected-component labelling, which is used in com-
puter vision.

1.1. Related work

Calculating the number of connected components in 
o(n) space or time has received a lot of attention: [3]
give a deterministic algorithm to solve the Connected Com-
ponent Problem in logarithmic space. The first sublinear 
time1 approximation algorithm was provided by [1]. The 
authors present an algorithm that approximates the num-
ber of connected components with constant probability 
within a factor of εn. The running time of their algorithm 
is O (dε−2 log( d

ε )) where d is the average degree. As we ex-
plain in Section 2.1, the algorithm presented in this paper 
uses some of their techniques. The authors of [1] also pro-
vide a Ω(dε−2) lower bound for estimating the number 
of connected components for graphs with multiple edges. 
We note that their lower bound does not apply to graphs 

1 The required time is o(n) for an input of size n.
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without multiple edges and hence, their lower bound does 
not apply to the graph class considered in this paper.

The authors of [4] approximate the number of con-
nected components within a multiplicative error in the 
metric setting, i.e., in graphs with edge weight satisfying 
the triangle inequality. Their algorithm runs in Õ ( n

ε8 ) time 

(Õ is used to suppress logarithmic factors).
There are also results in the property testing model. The 

authors of [5] give a property-testing algorithm applicable 
to graphs of bounded degree D . Their algorithm accepts 
G if G is connected. If G is ε-far from being connected 
(meaning that at least εDn edges have to be added in or-
der to make it connected), their algorithm rejects with a 
probability of at least 2

3 . The property tester presented has 
a running time of O (log2(1/(εD))/ε).

2. The algorithm

Our algorithm uses some ideas of [1]. In the following 
we first present their algorithm, then we sketch an easy 
algorithm which has the same approximation as our algo-
rithm, but a running time of O (ε−4). Finally, we present 
our algorithm in Section 2.3.

2.1. Chazelle’s algorithm

The algorithm of [1] calculates first r = O ( 1
ε2 ) estima-

tors β1, . . . , βr . Then the algorithm outputs

ĉ = n

2r
·

r∑
i=1

βi,

which is defined as the average of these estimators. The 
authors show that ĉ correctly estimates the number of 
connected components within an additive factor εn, with 
probability of at least 3/4. Each βi is calculated in the 
following way: A start node ui is chosen uniformly at ran-
dom. The algorithm performs a BFS (Breadth-First Search) 
starting at ui . The BFS visits all neighbours of ui unless it 
has a degree greater than W = 2/ε. Afterwards, the algo-
rithm proceeds in rounds. In every round a coin is flipped 
and if the outcome is tails, then the algorithm sets βi = 0. 
If the outcome is heads, then the algorithm continues the 
BFS search by visiting (in the current round) at most as 
many edges as visited in all previous rounds combined. If 
all edges in the connected component have been explored, 
then the algorithm returns

βi = dui · 2# of coinflips

# visited edges
,

where du denotes the degree of node u. If the connected 
components size exceeds a threshold of O (d/ε) or the de-
gree of one of the visited nodes exceeds the estimate of 
the average degree, then βi = 0.

The overall estimator of the number of connected com-
ponents is the average over all estimators βi scaled by n.

2.2. An easy algorithm

In order to establish some useful intuition, we briefly 
discuss an easier algorithm, inspired by [1] for achiev-

ing an εn-approximation with probability at least 3/4 and 
with a running time of O (ε−4). The algorithm does the 
following. Sample r∗ = O (ε−2) many starting nodes uni-
formly at random. Let ui be the node of sample i. Perform 
a BFS starting at ui until either the component is explored 
or W ∗ = c′ε−1 nodes are visited for some fixed constant 
c′ . We set βui = 1/cui if the entire component was discov-
ered where cui is the size of the connected component of 
ui . Otherwise, i.e., if the connected component of u was 
not discovered completely, we set βui = 0. Finally, output 
ĉ∗ = n/r∗ ∑

i βi as an estimate of the number of connected 
components.

The total number of queries is O (ε−4) since every BFS 
has O (ε−2) many edges. By using the same ideas as in [1], 
one can see that c − εn

2 < E[ĉ∗] ≤ c, where c is the number 
connected components. The εn/2 approximation, is due to 
the early stopping of explorations visiting W ∗ many nodes, 
since the number of connected components having a size 
of more than W ∗ is bounded by εn. By observing that the 
variance of ĉ∗ is small and by applying Chebyshev’s in-
equality, one can verify that the algorithm approximates 
c within an additive error of εn with a probability of at 
least 3/4.

We now use a slightly more sophisticated algorithm 
to decrease the running time without affecting the error 
bounds.

2.3. Our algorithm

The core of our algorithm is similar to the algorithm 
of [1]. Our algorithm of calculates first r = O ( 1

ε2 ) esti-
mators β1, . . . , βr and outputs ĉ as the average of these 
estimators. The difference between the two algorithms lies 
in the calculation of βi . To decide when to stop the BFS 
walk for a node vi our algorithm uses a probability distri-
bution inspired by [4]. Let cv denote the number of nodes 
in the connected component containing v . For every node 
vi we define a random variable Xi and explore the com-
ponent of vi for min{Xi, W } steps. Xi is drawn according 
to the probability distribution P (X ≥ j) = 1

j2 . If the entire 
component is explored, our algorithm sets βi = cvi . Other-
wise, i.e., if our algorithm stops exploring the component, 
our algorithm sets βi = 0.

The probability of visiting the whole component of 
node vi is 1/c2

i if ci ≤ W and 0 otherwise.

Algorithm CC:
Set r = O ( 1

ε2 ) and W = 2
ε .

for i = 0 to r do
Pick a start node vi uniformly at random.
Choose Xi according to the prob. distribution P (X ≥
j) = 1

j2 .

Perform a BFS starting from vi until one of the fol-
lowing events occurs.

Event 1) All nodes in vi ’s component are ex-
plored: Set βi = cv .
Event 2) min{Xi, W } + 1 nodes are explored: Set 
βi = 0.

end for
Output ĉ = n

r

∑r
i=1 βi as the estimated number of con-

nected components.
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