
Information Processing Letters 114 (2014) 639–642

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Estimating the number of connected components in sublinear

time

Petra Berenbrink, Bruce Krayenhoff, Frederik Mallmann-Trenn ∗

Simon Fraser University, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 February 2014
Received in revised form 15 May 2014
Accepted 16 May 2014
Available online 29 May 2014
Communicated by Ł. Kowalik

Keywords:
Approximation algorithms
Graph algorithms
Connected components
Sublinear time algorithms
Graph theory

We present an algorithm that estimates the number of connected components of a graph
over n vertices within an additive error of εn in (sublinear) time O (1

ε2 log(1
ε)). A connected

component C is the maximal subset of nodes of an undirected graph G such that for any
two nodes in C there is path connecting. We consider graphs without multiple edges.
The Connected Component Problem is well-known and amongst the first topics taught in
graph theory. The number of connected components can be used to calculate the weight
of the minimum spanning tree [1]. Moreover, the study of connected components finds
its application in Connected-component labelling, which is used in computer vision. An
algorithm runs in sublinear time if its running time is o(n) for an input of size n. So far,
the best known algorithm was provided by [1]. Their running time is O (dε−2 log(d

ε)) where
d is the average degree.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be an undirected graph with n nodes,
without multiple edges. G may have self-loops. A con-
nected component C is the maximal subset of nodes of
an undirected graph G such that for any two nodes in
C there is path connecting them. It is well-known that
the problem of finding the number of connected compo-
nents can be solved in time O (|V | +|E|) using breadth-first
search (see [2], for example). In this paper we present a
sublinear-time algorithm which estimates the number of
connected components of G within an additive error of
εn in time O (1

ε2 log(1
ε)). So far, the best known sublinear-

time algorithm was provided by [1]. Their running time is
O (dε−2 log(d/ε)) where d is the average degree. Note that
our result is independent of the degree of the graph.

The Connected Component Problem is well-known and
amongst the first topics taught in graph theory. The num-
ber of connected components can be used to calculate
the weight of the minimum spanning tree [1]. Moreover,

* Corresponding author.

the study of connected components finds its application
in Connected-component labelling, which is used in com-
puter vision.

1.1. Related work

Calculating the number of connected components in
o(n) space or time has received a lot of attention: [3]
give a deterministic algorithm to solve the Connected Com-
ponent Problem in logarithmic space. The first sublinear
time1 approximation algorithm was provided by [1]. The
authors present an algorithm that approximates the num-
ber of connected components with constant probability
within a factor of εn. The running time of their algorithm
is O (dε−2 log(d

ε)) where d is the average degree. As we ex-
plain in Section 2.1, the algorithm presented in this paper
uses some of their techniques. The authors of [1] also pro-
vide a Ω(dε−2) lower bound for estimating the number
of connected components for graphs with multiple edges.
We note that their lower bound does not apply to graphs

1 The required time is o(n) for an input of size n.

http://dx.doi.org/10.1016/j.ipl.2014.05.008
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.05.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://dx.doi.org/10.1016/j.ipl.2014.05.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.05.008&domain=pdf

640 P. Berenbrink et al. / Information Processing Letters 114 (2014) 639–642

without multiple edges and hence, their lower bound does
not apply to the graph class considered in this paper.

The authors of [4] approximate the number of con-
nected components within a multiplicative error in the
metric setting, i.e., in graphs with edge weight satisfying
the triangle inequality. Their algorithm runs in Õ (n

ε8) time

(Õ is used to suppress logarithmic factors).
There are also results in the property testing model. The

authors of [5] give a property-testing algorithm applicable
to graphs of bounded degree D . Their algorithm accepts
G if G is connected. If G is ε-far from being connected
(meaning that at least εDn edges have to be added in or-
der to make it connected), their algorithm rejects with a
probability of at least 2

3 . The property tester presented has
a running time of O (log2(1/(εD))/ε).

2. The algorithm

Our algorithm uses some ideas of [1]. In the following
we first present their algorithm, then we sketch an easy
algorithm which has the same approximation as our algo-
rithm, but a running time of O (ε−4). Finally, we present
our algorithm in Section 2.3.

2.1. Chazelle’s algorithm

The algorithm of [1] calculates first r = O (1
ε2) estima-

tors β1, . . . , βr . Then the algorithm outputs

ĉ = n

2r
·

r∑
i=1

βi,

which is defined as the average of these estimators. The
authors show that ĉ correctly estimates the number of
connected components within an additive factor εn, with
probability of at least 3/4. Each βi is calculated in the
following way: A start node ui is chosen uniformly at ran-
dom. The algorithm performs a BFS (Breadth-First Search)
starting at ui . The BFS visits all neighbours of ui unless it
has a degree greater than W = 2/ε. Afterwards, the algo-
rithm proceeds in rounds. In every round a coin is flipped
and if the outcome is tails, then the algorithm sets βi = 0.
If the outcome is heads, then the algorithm continues the
BFS search by visiting (in the current round) at most as
many edges as visited in all previous rounds combined. If
all edges in the connected component have been explored,
then the algorithm returns

βi = dui · 2# of coinflips

visited edges
,

where du denotes the degree of node u. If the connected
components size exceeds a threshold of O (d/ε) or the de-
gree of one of the visited nodes exceeds the estimate of
the average degree, then βi = 0.

The overall estimator of the number of connected com-
ponents is the average over all estimators βi scaled by n.

2.2. An easy algorithm

In order to establish some useful intuition, we briefly
discuss an easier algorithm, inspired by [1] for achiev-

ing an εn-approximation with probability at least 3/4 and
with a running time of O (ε−4). The algorithm does the
following. Sample r∗ = O (ε−2) many starting nodes uni-
formly at random. Let ui be the node of sample i. Perform
a BFS starting at ui until either the component is explored
or W ∗ = c′ε−1 nodes are visited for some fixed constant
c′ . We set βui = 1/cui if the entire component was discov-
ered where cui is the size of the connected component of
ui . Otherwise, i.e., if the connected component of u was
not discovered completely, we set βui = 0. Finally, output
ĉ∗ = n/r∗ ∑

i βi as an estimate of the number of connected
components.

The total number of queries is O (ε−4) since every BFS
has O (ε−2) many edges. By using the same ideas as in [1],
one can see that c − εn

2 < E[ĉ∗] ≤ c, where c is the number
connected components. The εn/2 approximation, is due to
the early stopping of explorations visiting W ∗ many nodes,
since the number of connected components having a size
of more than W ∗ is bounded by εn. By observing that the
variance of ĉ∗ is small and by applying Chebyshev’s in-
equality, one can verify that the algorithm approximates
c within an additive error of εn with a probability of at
least 3/4.

We now use a slightly more sophisticated algorithm
to decrease the running time without affecting the error
bounds.

2.3. Our algorithm

The core of our algorithm is similar to the algorithm
of [1]. Our algorithm of calculates first r = O (1

ε2) esti-
mators β1, . . . , βr and outputs ĉ as the average of these
estimators. The difference between the two algorithms lies
in the calculation of βi . To decide when to stop the BFS
walk for a node vi our algorithm uses a probability distri-
bution inspired by [4]. Let cv denote the number of nodes
in the connected component containing v . For every node
vi we define a random variable Xi and explore the com-
ponent of vi for min{Xi, W } steps. Xi is drawn according
to the probability distribution P (X ≥ j) = 1

j2 . If the entire
component is explored, our algorithm sets βi = cvi . Other-
wise, i.e., if our algorithm stops exploring the component,
our algorithm sets βi = 0.

The probability of visiting the whole component of
node vi is 1/c2

i if ci ≤ W and 0 otherwise.

Algorithm CC:
Set r = O (1

ε2) and W = 2
ε .

for i = 0 to r do
Pick a start node vi uniformly at random.
Choose Xi according to the prob. distribution P (X ≥
j) = 1

j2 .

Perform a BFS starting from vi until one of the fol-
lowing events occurs.

Event 1) All nodes in vi ’s component are ex-
plored: Set βi = cv .
Event 2) min{Xi, W } + 1 nodes are explored: Set
βi = 0.

end for
Output ĉ = n

r

∑r
i=1 βi as the estimated number of con-

nected components.

Download English Version:

https://daneshyari.com/en/article/428928

Download Persian Version:

https://daneshyari.com/article/428928

Daneshyari.com

https://daneshyari.com/en/article/428928
https://daneshyari.com/article/428928
https://daneshyari.com

