
Information Processing Letters 113 (2013) 604–608

Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Binary jumbled string matching for highly run-length
compressible texts

Golnaz Badkobeh a, Gabriele Fici b, Steve Kroon c, Zsuzsanna Lipták d,∗
a Department of Informatics, King’s College, London, UK
b Dipartimento di Matematica e Informatica, Università di Palermo, Italy
c Computer Science Division, Stellenbosch University, South Africa
d Dipartimento di Informatica, Università di Verona, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 November 2012
Received in revised form 10 May 2013
Accepted 14 May 2013
Available online 15 May 2013
Communicated by Ł. Kowalik

Keywords:
String algorithms
Data structures
Jumbled pattern matching
Parikh vectors
Prefix normal form
Run-length encoding

The Binary Jumbled String Matching Problem is defined as follows: Given a string s over
{a,b} of length n and a query (x, y), with x, y non-negative integers, decide whether s
has a substring t with exactly x a’s and y b’s. Previous solutions created an index of size
O (n) in a pre-processing step, which was then used to answer queries in constant time.
The fastest algorithms for construction of this index have running time O (n2/ log n) (Burcsi
et al., 2010 [1]; Moosa and Rahman, 2010 [7]), or O (n2/ log2 n) in the word-RAM model
(Moosa and Rahman, 2012 [8]). We propose an index constructed directly from the run-
length encoding of s. The construction time of our index is O (n + ρ2 logρ), where O (n) is
the time for computing the run-length encoding of s and ρ is the length of this encoding—
this is no worse than previous solutions if ρ = O (n/ log n) and better if ρ = o(n/ log n).
Our index L can be queried in O (logρ) time. While |L| = O (min(n,ρ2)) in the worst case,
preliminary investigations have indicated that |L| may often be close to ρ . Furthermore,
the algorithm for constructing the index is conceptually simple and easy to implement. In
an attempt to shed light on the structure and size of our index, we characterize it in terms
of the prefix normal forms of s introduced in Fici and Lipták (2011) [6].1

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Binary jumbled string matching is defined as follows:
Given a string s over {a,b} and a query vector (x, y) of
non-negative integers x and y, decide whether s has a sub-
string containing exactly x a’s and y b’s. If this is the case,
we say that (x, y) occurs in s. The Parikh set of s, Π(s), is
the set of all vectors occurring in s.

For one query, the problem can be solved optimally by
a simple sliding window algorithm in O (n) time, where

* Corresponding author.
E-mail addresses: golnaz.badkobeh@kcl.ac.uk (G. Badkobeh),

gabriele.fici@unipa.it (G. Fici), kroon@sun.ac.za (S. Kroon),
zsuzsanna.liptak@univr.it (Z. Lipták).

1 A preliminary version of this paper was published on arXiv under
the title Binary jumbled string matching: Faster indexing in less space, arXiv:
1206.2523v2, 2012.

n is the length of the text. Here we are interested in the
indexing variant where the text is fixed, and we expect a
large number of queries. Recently, this problem and its
variants have generated much interest [4,1,2,7,8,3,5]. The
crucial observation is based on the following property of
binary strings:

Interval Lemma. (See [4].) Given a string s over Σ = {a,b},
|s| = n. For every m ∈ {1, . . . ,n}: if, for some x < x′ , both
(x,m − x) and (x′,m − x′) occur in s, then so does (z,m − z)
for all z, x < z < x′ .

It thus suffices to store, for every query length m, the
minimum and maximum number of a’s in all m-length
substrings of s. This information can be stored in a lin-
ear size index, and now any query of the form (x, y) can
be answered by looking up whether x lies between the

0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.05.007

http://dx.doi.org/10.1016/j.ipl.2013.05.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:golnaz.badkobeh@kcl.ac.uk
mailto:gabriele.fici@unipa.it
mailto:kroon@sun.ac.za
mailto:zsuzsanna.liptak@univr.it
http://dx.doi.org/10.1016/j.ipl.2013.05.007
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ipl.2013.05.007&domain=pdf

G. Badkobeh et al. / Information Processing Letters 113 (2013) 604–608 605

minimum and maximum number of a’s for length m =
x + y. The query time is proportional to the time it takes
to find x + y in the index, which is constant in most im-
plementations.

This index can be constructed naively in O (n2) time.
In [1] and independently in [7], construction algorithms
were presented with running time O (n2/ log n), using re-
duction to min-plus convolution. In the word-RAM model,
the running time can again be reduced to O (n2/ log2 n),
using bit-parallelism [8]. More recently, a Monte Carlo al-
gorithm with running time O (n1+ε) was introduced [5],
which constructs an approximate index allowing one-sided
errors, with the probability of an incorrect answer depend-
ing on the choice of ε.

Any binary string s can be uniquely written in the
form s = au1 bv1 au2 bv2 · · ·aur bvr , where the ui, vi are non-
negative integers, all non-zero except possibly u1 and vr .
The run-length encoding of s is then defined as rle(s) =
(u1, v1, u2, v2, . . . , ur, vr). This representation is often used
to compress strings, especially in domains where long runs
of characters occur frequently, such as the representation
of digital images, multimedia databases, and time series.

In this paper, we present the Corner Index L which, for
strings with good run-length compression, is much smaller
than the linear size index used by all previous solutions. It
is constructed directly from the run-length encoding of s,
in time O (ρ2 logρ), where ρ = |rle(s)|. The Corner Index
has worst-case size min(n,ρ2) (measured in the number
of entries, which fit into two computer words). We pay
for this with an increase in lookup time from O (1) to
O (log |L|) = O (logρ).

In a recent paper [6], the prefix normal forms of a binary
string were introduced. Given s of length n, PNFa(s) is the
unique string such that, for every 1 � m � n, its m-length
prefix has the same number of a’s as the maximum num-
ber of a’s in any m-length substring of s; PNFb(s) is de-
fined analogously. It was shown in [6] that two strings s
and t have the same Parikh set if and only if PNFa(s) =
PNFa(t) and PNFb(s) = PNFb(t). From this perspective, our
index can be viewed as storing the run-length encodings
of PNFa(s) and PNFb(s). This allows us a fresh view on
the problem, and may point to a promising way of proving
bounds on the index size. Moreover, our algorithm consti-
tutes an improvement both for the computation and the
testing problems on prefix normal forms (see [6]) when-
ever rle(s) is short.

The construction time of O (n + ρ2 logρ), where O (n)

is for computing rle(s) and O (ρ2 logρ) for construct-
ing the Corner Index, is much better than the previous
O (n2/ log n) time algorithms for strings with short run-
length encodings, and no worse as long as ρ = O (n/ log n).
For strings with good run-length compression, the increase
in lookup time from O (1) to O (log |L|) is justified in our
view by the reduced size and construction time of the new
index. Finally, our algorithm is conceptually simple and
easy to implement.

2. Preliminaries

A binary string s = s1s2 · · · sn is a finite sequence of
characters from {a,b}. We denote the length of s by |s|. For

Table 1
Functions bmin and bmax for the string s = aabababbaaabbaabbb.

i 0 1 2 3 4 5 6 7 8 9

bmin(i) 0 0 0 0 2 2 4 4 6 6
bmax(i) 3 3 5 5 5 7 8 9 9 9

two strings s, t , we say that t is a substring of s if there are
indices 1 � i, j � |s| such that t = si · · · s j . If i = 1, then t is
called a prefix of s. We denote by |s|a (resp. |s|b) the num-
ber of a’s (resp. b’s) in s. The Parikh vector of s is defined
as p(s) = (|s|a, |s|b). We say that a Parikh vector q occurs in
string s if s has a substring t such that p(t) = q. The Parikh
set of s, Π(s), is the set of all Parikh vectors occurring in s.

The Interval Lemma from the Introduction implies that,
for any binary string s, there are functions F and f s.t.

(x, y) occurs in s if and only if f (x + y) � x � F (x + y),

(1)

namely, for m = 0, . . . , |s|, F (m) = max{x | (x,m − x) ∈
Π(s)} and f (m) = min{x | (x,m − x) ∈ Π(s)}. This can be
stated equivalently in terms of the minimum and max-
imum number of b’s in all substrings containing a fixed
number i of a’s. Let us denote by bmin(i) (resp. bmax(i))
the minimum (resp. maximum) number of b’s in a sub-
string containing exactly i a’s. Then

(x, y) occurs in s if and only if bmin(x) � y � bmax(x).

(2)

The table of functions F and f in (1) is the index
used in most algorithms for binary jumbled string match-
ing [2,7,8], while that of functions bmin and bmax in (2)
was used in [3]. Even though the latter is always smaller,
both are linear size in n. Note that one table can be com-
puted from the other in linear time (e.g. bmin(i) = min{m |
F (m) = i} − i).

Example 1. Let s = aabababbaaabbaabbb. Then (3,3) occurs
in s while (5,1) does not. We have F (6) = 4 and f (6) =
2, bmin(3) = 0 and bmax(3) = 5. We give the full table of
values of the two functions bmin and bmax in Table 1.

3. The Corner Index

In Fig. 1, we plot both functions bmin and bmax for
our example string. The x-axis denotes the number of a’s
and the y-axis the number of b’s. It follows from (2) that
the integer points within the shaded area correspond to
the Parikh set of s. The crucial observation is: Since both
functions bmin and bmax are monotonically increasing step
functions, it is sufficient to store those points where they
increase. These points are specially marked in Fig. 1.

Example 2. In our example, these points are, for bmin:
{(3,0), (5,2), (7,4), (9,6)}, and for bmax: {(0,3), (2,5),

(5,7), (6,8), (7,9)}.

Definition 1. We define the Corner Index for the Parikh set
of a given binary string s as two ordered sets Lmin and
Lmax, where

Download English Version:

https://daneshyari.com/en/article/428944

Download Persian Version:

https://daneshyari.com/article/428944

Daneshyari.com

https://daneshyari.com/en/article/428944
https://daneshyari.com/article/428944
https://daneshyari.com

