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A 1-planar drawing of a graph is such that each edge is crossed at most once. In 1997,
Pach and Tóth showed that any 1-planar drawing with n vertices has at most 4n − 8 edges
and that this bound is tight for n � 12. We show that, in fact, 1-planar drawings with n
vertices have at most 4n − 9 edges, if we require that the edges are straight-line segments.
We also prove that this bound is tight for infinitely many values of n � 8. Furthermore, we
investigate the density of 1-planar straight-line drawings with additional constraints on the
vertex positions. We show that 1-planar drawings of bipartite graphs whose vertices lie on
two distinct horizontal layers have at most 1.5n − 2 edges, and we prove that 1-planar
drawings such that all vertices lie on a circumference have at most 2.5n − 4 edges; both
these bounds are also tight.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Drawings of graphs with few crossings per edge have
been studied in graph drawing, graph theory, and compu-
tational geometry. A k-planar drawing of a graph is such
that each edge is crossed at most k times. Planar drawings
can be regarded as k-planar drawings for k = 0.

Pach and Tóth [11] showed that k-planar drawings with
n vertices cannot have more than 4.108

√
kn edges. For

k � 4, they also established a better bound, (k + 3)(n − 2),
and proved that this bound is tight for k � 2. Hence, 1-
planar drawings cannot have more than 4n − 8 edges, and
Pach and Tóth proved that for any n � 12 there exists a 1-
planar drawing with n vertices and 4n − 8 edges (i.e., the
4n − 8 bound is tight for n � 12).

Maximal 1-planar graphs have been also investigated.
A 1-planar graph G is maximal if it admits a 1-planar
drawing and no edge can be added to G without loos-
ing this property. Brandenburg et al. [2] showed that there
exist maximal 1-planar graphs with only 2.65n + O (1)

edges and that every maximal 1-planar graph has at least
2.1n − O (1) edges. Korzhik and Mohar [10] showed that
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testing 1-planarity is NP-hard and Auer et al. [1] proved
that this is true even if a rotation system for the graph is
given and cannot be changed (a rotation system fixes for
each vertex the clockwise ordering of its incident edges).
On the positive side, Eades et al. [7] proved that maximal
1-planarity can be tested in linear time for a graph with a
given rotation system.

The relationships between 1-planar drawings and right
angle crossing drawings have been studied in [8]. In a right
angle crossing drawing, edges cross only at right angles
(see, e.g., [5,6] for definitions and results about right an-
gle crossing drawings).

In this paper we concentrate on 1-planar drawings with
straight-line edges. We prove that, in fact, a straight-line 1-
planar drawing with n vertices has at most 4n − 9 edges,
and that this bound is tight. More precisely, we show in-
finitely many graphs with n � 8 vertices and 4n − 9 edges
that are straight-line 1-planar drawable. This result and
the bound proved in [11] immediately imply that there
are infinitely many graphs that admit a 1-planar draw-
ing but that do not admit a straight-line 1-planar draw-
ing (i.e., all 1-planar graphs with 4n − 8 edges). In this
respect, it is worth recalling that Hong et al. [9] char-
acterized those 1-planar drawings whose edges can be
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Fig. 1. Illustration for the proof of Lemma 1.

“straightened” keeping unchanged their edge crossings and
their rotation system; they are those 1-planar drawings
that do not contain specific forbidden structures; our re-
sult implies that every 1-planar drawing with n vertices
and 4n − 8 edges necessarily contains at least one of the
forbidden structures described in [9].

Furthermore, we investigate the edge density of 1-
planar straight-line drawings with additional constraints
on the vertex positions. We show that 1-planar drawings
of bipartite graphs whose vertices lie on two distinct hor-
izontal layers have at most 1.5n − 2 edges (which follows
easily from a result in [3]), and we prove that 1-planar
drawings such that all vertices lie on a circumference have
at most 2.5n − 4 edges; both these bounds are tight.

The remainder of the paper is structured as follows. The
bound on the number of edges of general straight-line 1-
planar drawings is proved in Section 2. The edge density of
constrained straight-line 1-planar drawings is discussed in
Section 3. Conclusions and open problems are in Section 4.

2. General straight-line 1-planar drawings

To prove that a straight-line 1-planar drawing has at
most 4n − 9 edges, we use a technique similar to that
applied to derive the 4n − 10 bound on the density of
a straight-line right angle crossing drawing (also called
a RAC drawing) [4,5]. We recall that a RAC drawing is a
drawing where the edges can only cross at right angles,
i.e., any two crossing edges are orthogonal to each other.
Eades and Liotta recently investigated some relationships
between 1-planar straight-line drawings and straight-line
RAC drawings [8]. They show that every graph admitting
a straight-line RAC drawing that is maximally dense (i.e.,
with 4n − 10 edges) also admits a straight-line 1-planar
drawing; they also prove that there exist infinitely many
graphs with 4n − 10 edges that admit a straight-line 1-
planar drawing but that have no straight-line RAC drawing.

Let G be a graph that admits a 1-planar straight-line
drawing D . Each edge of G is either crossing free in D ,
or it forms a crossing with exactly one other edge in the
drawing. Hence, we can color the edges of G with three
colors, red, blue, and green, such that a red edge does
not cross any other edge in D and each blue edge crosses
(exactly) one green edge in D . We denote by Gr the sub-
graph of G consisting of all vertices of G and only its red
edges. Similarly, Gb (resp. G g ) is the subgraph of G con-
sisting of all vertices of G and only its blue edges (resp.
the green edges). Graphs Gr , Gb , and G g are called the red
subgraph, the blue subgraph, and the green subgraph of G

induced by D , respectively. The subdrawings of D for the
red, the blue, and the green subgraphs are denoted by Dr ,
Db , and D g , respectively. By definition, Dr , Db , and D g are
planar drawings. Also, if Drb = Dr ∪ Db and Drg = Dr ∪ D g ,
we also have that Drb and Drg are planar.

A graph G is a maximal straight-line 1-planar graph if:
(i) G admits a straight-line 1-planar drawing D; (ii) the
graph obtained from G by adding any other edge has no
straight-line 1-planar drawing.

Similarly to straight-line RAC drawings [4,5], we are
able to prove the following technical lemma.

Lemma 1. Let G be a maximal straight-line 1-planar graph and
let D be a straight-line 1-planar drawing of G. Let Dr , Db, and
D g be the subdrawings of D for the red, the blue, and the green
subgraph of G, respectively. Drawings Drb and Drg have the
same external face, which consists of red edges only. Also, ev-
ery internal face of Drb (resp. of Drg ) contains at least two red
edges.

Proof. Consider first the (not necessarily simple) polygon
P (D) formed by the sequence of vertices, crossing points,
and edge segments encountered while walking on the ex-
ternal contour of D (i.e., the contour delimiting D). P (D)

must be a convex polygon, otherwise it would be possi-
ble to add at least one extra red edge to the convex-hull
of P (D) between two vertices of P (D) that are also ver-
tices of G; this would contradict the fact that G is maximal
straight-line 1-planar. Since the segments of a convex poly-
gon cannot cross, it follows that P (D) is formed only by
vertices and edges of G , and all its edges are red edges
(because they do not cross). This immediately implies that
P (D) coincides with the external face of Drb and of Drg .

We now concentrate on the internal faces of Drb and
of Drg . Let f be an internal face of the red–blue draw-
ing (the proof is the same for the internal faces of the
red–green drawing). The boundary of f is a polygon (not
necessarily simple) and it must have at least three vertices
with an interior angle smaller than 180◦ . Let u be any of
these vertices, and let e1 and e2 be the two edges incident
to u on the boundary of f that form an angle smaller than
180◦ inside f (see Fig. 1(a)). Below, we prove that at least
one of e1 and e2 is red. Since there are at least three ver-
tices with an interior angle smaller than 180◦ , and since
any two of these vertices share at most one edge of the
boundary of f , this suffices to prove that f has at least
two red edges.

Suppose by contradiction that both e1 and e2 are blue
edges. This implies that e1 is crossed by a green edge e′
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