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We study the classical batch scheduling problem with identical job processing times and
identical setups on parallel identical machines. We show that, similar to the single machine
case, the solution is given by a closed form, consisting of identical decreasing arithmetic
sequences of batch sizes on the different machines. A very close-to-optimal integer solution
is obtained in O (m + √

n ) time, where m is the number of machines, and n is the number
of jobs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The classical batch scheduling problem, where n iden-
tical jobs need to be processed on a single machine,
and the objective function is minimum flowtime, was
solved twenty five years ago (Santos and Magazine [1]).
The closed form solution consists of an expression for the
number of batches, and of a decreasing arithmetic se-
quence of the batch sizes. Recently, Mor and Mosheiov [2]
extended these results to the setting of a two uniform ma-
chines. Their algorithm runs in O (n) time, where n is the
number of jobs. In this note we focus on the setting of m
parallel identical machines. We show that similar to the sin-
gle machine case, an optimal solution (the optimal number
of batches on each machine and their sizes) is given in a
closed form.

These results refer to the “relaxed” version of the prob-
lem, i.e. when non-integer batch sizes are allowed. Shall-
cross [3] and Mosheiov et al. [4] introduced solutions for
the integer version of the single machine problem. We in-
troduce here an efficient O (m +√

n ) approximation proce-
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dure for the case of parallel identical machines. [It should
be noted that this procedure is not polynomial in the in-
put size, which consists of four values: number of jobs,
number of machines, jobs’ identical processing time, and
the constant setup time; see below.] Our proposed pro-
cedure is shown numerically to produce extremely close-
to-optimal schedules (with average optimality gaps of no
more than 0.02%).

Formally, n identical jobs (with p denoting their com-
mon processing time), need to be processed on m parallel
identical machines. These jobs can be processed in batches,
and for a given job allocation to batches, we denote by Ki

the number of batches assigned to machine i, i = 1, . . . ,m.
Let ni, j , i = 1, . . . ,m, j = 1, . . . , Ki , denote the number of

jobs assigned to batch j on machine i. Let ni = ∑Ki
j=1 ni, j

denote the total load assigned to machine i, i = 1, . . . ,m.
(Clearly n = ∑m

i=1 ni = ∑m
i=1

∑Ki
j=1 ni, j .)

Following Santos and Magazine [1], we assume that
when starting a new batch, a constant setup time, denoted
by s is incurred. Note that the setup time is both machine-
and batch-independent. We also assume (as in Santos and
Magazine) batch availability, i.e. the completion time of a
job is defined as the completion time of the entire batch
to which it is assigned.
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Let Ci, j denote the completion time of batch j on ma-
chine i, i = 1, . . . ,m, j = 1, . . . , Ki . The objective function
is the minimum sum of job completion times. Due to the
property of batch availability, the contribution of batch j
to the objective function is ni, j Ci, j . The sum of job comple-

tion times is given by
∑

C ≡ ∑m
i=1

∑Ki
j=1 ni, j Ci, j . Thus, the

problem solved in this note is Pm/batch, s, p j = p/
∑

C .

2. A closed form solution for the non-integer problem

We focus first on the “relaxed” version of the problem,
where, as mentioned, batch sizes are not forced to be inte-
gers. For convenience we assume unit processing times, i.e.
p = 1. In this case, the sum of the job completion times is
given by

f =
m∑

i=1

[
(s + ni,1)ni,1 + (2s + ni,1 + ni,2)ni,2 + · · ·

+
(

(Ki − 1)s +
Ki−1∑
j=1

ni, j

)
ni,Ki−1

+
(

Ki s +
Ki∑

j=1

ni, j

)
ni,Ki

]

=
m∑

i=1

[ Ki∑
j=1

( j∑
l=1

ni,l

)
ni, j + s

Ki∑
j=1

jni, j

]
.

It is easy to verify the following equality:

K∑
j=1

( j∑
i=1

ni

)
n j = 1

2

K∑
j=1

n2
j + 1

2

(
K∑

j=1

n j

)2

.

The objective function can be written as

f =
m∑

i=1

[
1

2

Ki∑
j=1

n2
i, j + 1

2

( Ki∑
j=1

ni, j

)2

+ s
Ki∑

j=1

jni, j

]
. (1)

Thus, we have to solve the following problem:

Min f

s.t.
m∑

i=1

Ki∑
j=1

ni, j = n,

ni, j � 0, i = 1, . . . ,m, j = 1, . . . , Ki .

Note that f is a quadratic convex function of the
batch sizes. The global minimum can be found by applying
the Karush–Kuhn–Tucker (KKT) conditions. The Lagrangian,
with a single Lagrange multiplier λ, is

L = f − λ

(
m∑

i=1

Ki∑
j=1

ni, j − n

)
.

The KKT conditions are

∂L

∂ni, j
= ni, j +

Ki∑
j=1

ni, j + js − λ = 0,

j = 1, . . . , Ki, i = 1, . . . ,m, (2)

λ

(
m∑

i=1

Ki∑
j=1

ni, j − n

)
= 0, (3)

ni, j � 0, i = 1, . . . ,m, j = 1, . . . , Ki . (4)

From (2) we note that on each machine the batch sizes
follow a decreasing arithmetic sequence, with s being the
constant difference:

ni, j = ni,1 − ( j − 1)s, i = 1, . . . ,m, j = 2, . . . , Ki . (5)

The sum of each arithmetic sequence is given by

Ki∑
j=1

ni, j = Ki

2

(
2ni,1 − (Ki − 1)s

)

= Kini,1 − 1

2
sKi(Ki − 1), i = 1, . . . ,m. (6)

It follows from (2) that λ > 0. Thus, from (3) we must
have

∑m
i=1

∑Ki
j=1 ni, j = n.

We consider a symmetric solution, i.e. identical load al-
location among the machines:

K1∑
j=1

n1, j =
K2∑
j=1

n2, j = · · · =
Km∑
j=1

nm, j .

It follows that

n/m =
Ki∑

j=1

ni, j, i = 1, . . . ,m. (7)

[Below we show that this symmetric solution satisfies all
KKT conditions, implying that indeed it is globally optimal.
However, symmetry, i.e. equal load allocation, also follows
from the convexity of the objective function (1).]

In order to obtain the size of the first batch on each
machine, we equate (6) and (7):

ni,1 = n

mKi
+ 1

2
s(Ki − 1), i = 1, . . . ,m. (8)

Clearly, the last term in the sequence must be strictly pos-
itive. Therefore

ni,Ki = ni,1 − (Ki − 1)s > 0, i = 1, . . . ,m. (9)

Substituting ni,1 (from (8)), we get

msK 2
i − msKi − 2n < 0, i = 1, . . . ,m. (10)

When solving this quadratic inequality, we obtain that
the largest positive value of Ki (i = 1, . . . ,m) that satis-
fies (10) is

Ki =
⌊√

1

4
+ 2n

ms
+ 1

2

⌋
, i = 1, . . . ,m.

The latter is the (identical) number of batches assigned to
each machine.
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