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A behavioural pseudometric is often defined as the least fixed point of a monotone
function F on a complete lattice of 1-bounded pseudometrics. According to Tarski’s fixed
point theorem, this least fixed point can be obtained by (possibly transfinite) iteration
of F , starting from the least element ⊥ of the lattice. The smallest ordinal α such that
F α(⊥) = F α+1(⊥) is known as the closure ordinal of F . We prove that if F is also
continuous with respect to the sup-norm, then its closure ordinal is ω. We also show that
our result gives rise to simpler and modular proofs that the closure ordinal is ω.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A behavioural equivalence addresses the fundamental
question whether two states of a system behave the same.
Numerous behavioural equivalences have been proposed
(see, for example, [1] for an overview). For systems that
contain quantitative data such as time or probabilities, a
quantitative generalization of a behavioural equivalence is
more appropriate. In such a setting one is interested how
similar two states behave. A behavioural pseudometric, first
introduced in [2], is such a quantitative generalization. It
assigns to every pair of states a distance, that is, a real
number in the interval [0,1]. The smaller the distance, the
more alike the states behave. If their distance is zero, then
the states behave exactly the same, that is, they are be-
haviourally equivalent. Numerous behavioural pseudomet-
rics have been proposed (see, for example, [3–6]).

Consider a system with a set of states X . A behavioural
pseudometric for such a system is a pseudometric on X .
Often, the behavioural pseudometric is defined as the least
fixed point of a monotone function F on a complete lattice
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of all 1-bounded pseudometric spaces on X (see, for ex-
ample, [7]). According to Tarski’s fixed point theorem [8],
this least fixed point can be obtained iteratively. Starting
from the least element ⊥ of the lattice, the function F
is applied repeatedly. The smallest ordinal α such that
F α(⊥) = F α+1(⊥) is called the closure ordinal of F .

In our setting, the least element of the lattice is the
pseudometric d0 that assigns to each pair of states distance
zero, that is, all states are considered behaviourally equiv-
alent. The function F applied to F α(d0) increases some of
the distances of F α(d0). This can be viewed as a quantita-
tive generalization of partition refinement. As in partition
refinement, where a fixed point is reached if no further re-
finements are needed, a fixed point of F is reached when
no distances are further increased.

If the closure ordinal of F is ω, then an iterative algo-
rithm to approximate the behavioural pseudometric may
be feasible. An example of such an iterative algorithm can
be found in, for example, [9]. Furthermore, properties of
the behavioural pseudometric may be proved using a sim-
ple inductive argument if the closure ordinal of F is ω.
An example of such a proof can be found in, for example,
[10, Appendix B].

In the literature, several (somewhat ad hoc) proofs can
be found that the monotone function F defining a be-
havioural pseudometric has closure ordinal ω (see, for
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example, [10,11]). In Section 2 we show that if F is also
continuous with respect to the sup-norm and the set X is
finite, then the closure ordinal of F is ω. It is often easier
to prove that F is nonexpansive, which implies continuity,
with respect to the sup-norm. As shown by means of an
example in Section 3, this result amounts to a fairly sim-
ple proof that the closure ordinal of F is ω. Furthermore,
as shown in Section 4 by means of an example, this re-
sult allows for modular proofs. In particular, if F is defined
as the composition of G and H , it suffices to prove that G
and H are (monotone and) nonexpansive.

2. The main result

We fix a finite set X . Recall that a 1-bounded pseudomet-
ric on X is a function d : X × X → [0,1] satisfying for all
x1, x2, x3 ∈ X ,

• d(x1, x1) = 0,
• d(x1, x2) = d(x2, x1) and
• d(x1, x3) � d(x1, x2) + d(x2, x3).

We denote the set of 1-bounded pseudometrics on X
by D(X). This set can be turned into a complete lattice
by means of the pointwise order: d1 � d2 if d1(x1, x2) �
d2(x1, x2) for all x1, x2 ∈ X (see, for example, [7, Lemma 3.2]
for a proof). The least element ⊥ of this lattice assigns dis-
tance zero to each pair of states. Let F : D(X) → D(X). For
n ∈ ω, we define the pseudometric dn on X by

dn =
{⊥ if n = 0,

F (dn−1) otherwise.

The pseudometric dω on X is defined by dω = ⊔
n∈ω dn .

Hence, dω(x1, x2) = supn∈ω dn(x1, x2). Recall that F is
monotone if d1 � d2 implies F (d1) � F (d2) for all d1,d2 ∈
D(X).

Proposition 1. If F : D(X) → D(X) is monotone then for all
n ∈ ω,

1. dn � dn+1 and
2. dn � F (dω).

Proof.

1. We prove this part by induction on n. In the base case,
obviously d0 =⊥� d1. In the inductive case, assume
that dn � dn+1. Since F is monotone, dn+1 = F (dn) �
F (dn+1) = dn+2.

2. By definition, dn � ⊔
n∈ω dn = dω for all n ∈ ω. Since

F is monotone, dn+1 = F (dn) � F (dω). Obviously, also
d0 =⊥� F (dω). �

The set of real valued functions on X × X , which is a
superset of D(X), can be turned into a Banach space by
means of the sup-norm: ‖ f ‖ = maxx1,x2∈X | f (x1, x2)|. Re-
call that a function F : D(X) → D(X) is continuous if for
all ε > 0 there exists δ > 0 such that ‖d1 − d2‖ < δ implies
‖F (d1) − F (d2)‖ < ε for all d1,d2 ∈ D(X).

Theorem 1. If F : D(X) → D(X) is monotone and continuous,
then the closure ordinal of F is ω.

Proof. First, we show that dω � F (dω). By Proposition 1.2,
F (dω) is an upper bound of {dn | n ∈ ω}. Since dω is its
least upper bound by definition, dω � F (dω).

Next, we show that (dn)n∈ω converges to dω . It suffices
to show that

∀ε > 0: ∃m ∈ ω: ∀n � m: ‖dω − dn‖ � ε.

Let ε > 0 and x1, x2 ∈ X . By definition, dω(x1, x2) =
supn∈ω dn(x1, x2). Hence, from Proposition 1.1 we can con-
clude that

∃mx1,x2 ∈ ω: ∀n � mx1,x2 :
∣∣dω(x1, x2) − dn(x1, x2)

∣∣ � ε.

Hence,

∀n � max{mx1,x2 | x1, x2 ∈ X}: ‖dω − dn‖ � ε.

That is, (dn)n∈ω converges to dω .
Since F is continuous, we can deduce from the above

that (F (dn))n∈ω converges to F (dω) and, hence, (dn)n∈ω

converges to F (dω). That is,

∀ε > 0: ∃m ∈ ω: ∀n � m:
∥∥F (dω) − dn

∥∥ � ε.

Hence, for all x1, x2 ∈ X , |F (dω)(x1, x2) − dn(x1, x2)| � ε .
Therefore, from Proposition 1.2 we can conclude that
F (dω)(x1, x2)�dn(x1, x2)+ε . Consequently, F (dω)(x1, x2)�
supn∈ω dn(x1, x2). Hence, F (dω) � dω . �

Rather than proving that F is continuous, we can often
prove an even stronger property, namely that F is nonex-
pansive, that is, for all d1,d2 ∈ D(X), ‖F (d1) − F (d2)‖ �
‖d1 − d2‖. Since F is also assumed to be monotone, it suf-
fices to prove the following.

Corollary 1. If F : D(X) → D(X) is monotone and for all
d1,d2 ∈ D(X), d1 	 d2 implies that for all x1, x2 ∈ X,

F (d1)(x1, x2) − F (d2)(x1, x2) � ‖d1 − d2‖, (1)

then the closure ordinal of F is ω.

Proof. It suffices to show that (1) implies that F is nonex-
pansive and, hence, continuous. Assume (1) and let d1,d2 ∈
D(X). Without loss of generality, suppose that d1 	 d2.
Since F is monotone, F (d1) 	 F (d2). Hence,
∥∥F (d1) − F (d2)

∥∥
= sup

x1,x2∈X

∣∣F (d1)(x1, x2) − F (d2)(x1, x2)
∣∣

= sup
x1,x2∈X

F (d1)(x1, x2) − F (d2)(x1, x2)

[F (d1) 	 F (d2)]
� ‖d1 − d2‖ [(1)].

Therefore, F is nonexpansive. �
Theorem 1 can also be obtained as a corollary of a more

general result about Banach lattices. Recall that the set of
real-valued functions on X × X forms a real vector space.



Download	English	Version:

https://daneshyari.com/en/article/428998

Download	Persian	Version:

https://daneshyari.com/article/428998

Daneshyari.com

https://daneshyari.com/en/article/428998
https://daneshyari.com/article/428998
https://daneshyari.com/

