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A behavioural pseudometric is often defined as the least fixed point of a monotone
function F on a complete lattice of 1-bounded pseudometrics. According to Tarski's fixed
point theorem, this least fixed point can be obtained by (possibly transfinite) iteration
of F, starting from the least element L of the lattice. The smallest ordinal « such that
F%(L) = F@*t1(1) is known as the closure ordinal of F. We prove that if F is also

continuous with respect to the sup-norm, then its closure ordinal is w. We also show that
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our result gives rise to simpler and modular proofs that the closure ordinal is w.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A behavioural equivalence addresses the fundamental
question whether two states of a system behave the same.
Numerous behavioural equivalences have been proposed
(see, for example, [1] for an overview). For systems that
contain quantitative data such as time or probabilities, a
quantitative generalization of a behavioural equivalence is
more appropriate. In such a setting one is interested how
similar two states behave. A behavioural pseudometric, first
introduced in [2], is such a quantitative generalization. It
assigns to every pair of states a distance, that is, a real
number in the interval [0, 1]. The smaller the distance, the
more alike the states behave. If their distance is zero, then
the states behave exactly the same, that is, they are be-
haviourally equivalent. Numerous behavioural pseudomet-
rics have been proposed (see, for example, [3-6]).

Consider a system with a set of states X. A behavioural
pseudometric for such a system is a pseudometric on X.
Often, the behavioural pseudometric is defined as the least
fixed point of a monotone function F on a complete lattice

E-mail address: franck@cse.yorku.ca.
1 Supported by the Natural Sciences and Engineering Research Council
of Canada and the Leverhulme Trust.

0020-0190/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.06.019

of all 1-bounded pseudometric spaces on X (see, for ex-
ample, [7]). According to Tarski's fixed point theorem [8],
this least fixed point can be obtained iteratively. Starting
from the least element L of the lattice, the function F
is applied repeatedly. The smallest ordinal « such that
F(L) = F**t1(1) is called the closure ordinal of F.

In our setting, the least element of the lattice is the
pseudometric dg that assigns to each pair of states distance
zero, that is, all states are considered behaviourally equiv-
alent. The function F applied to F*(dg) increases some of
the distances of F*(dp). This can be viewed as a quantita-
tive generalization of partition refinement. As in partition
refinement, where a fixed point is reached if no further re-
finements are needed, a fixed point of F is reached when
no distances are further increased.

If the closure ordinal of F is w, then an iterative algo-
rithm to approximate the behavioural pseudometric may
be feasible. An example of such an iterative algorithm can
be found in, for example, [9]. Furthermore, properties of
the behavioural pseudometric may be proved using a sim-
ple inductive argument if the closure ordinal of F is w.
An example of such a proof can be found in, for example,
[10, Appendix B].

In the literature, several (somewhat ad hoc) proofs can
be found that the monotone function F defining a be-
havioural pseudometric has closure ordinal w (see, for
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example, [10,11]). In Section 2 we show that if F is also
continuous with respect to the sup-norm and the set X is
finite, then the closure ordinal of F is w. It is often easier
to prove that F is nonexpansive, which implies continuity,
with respect to the sup-norm. As shown by means of an
example in Section 3, this result amounts to a fairly sim-
ple proof that the closure ordinal of F is w. Furthermore,
as shown in Section 4 by means of an example, this re-
sult allows for modular proofs. In particular, if F is defined
as the composition of G and H, it suffices to prove that G
and H are (monotone and) nonexpansive.

2. The main result

We fix a finite set X. Recall that a 1-bounded pseudomet-
ric on X is a function d: X x X — [0, 1] satisfying for all
X1,X2,X3 € X,

e d(x1,X%1) =0,
o d(x1,X2) =d(x2,x1) and
o d(x1,x3) <d(x1,X2) +d(X2,X3).

We denote the set of 1-bounded pseudometrics on X
by D(X). This set can be turned into a complete lattice
by means of the pointwise order: di C dy if dj(x1,x2) <
da(x1, x2) for all x1, x, € X (see, for example, [7, Lemma 3.2]
for a proof). The least element L of this lattice assigns dis-
tance zero to each pair of states. Let F : D(X) — D(X). For
n € w, we define the pseudometric d, on X by

4o — L ifn=0,
"7 | F(d,—1) otherwise.

The pseudometric d, on X is defined by dg, = | |, dn.
Hence, d,(x1,X2) = SUPuc, dn(X1,X2). Recall that F is
monotone if di C d, implies F(dy) C F(dy) for all dq,d, €
D(X).

Proposition 1. If F : D(X) — D(X) is monotone then for all
new,

1. dy Edpyq and
2. dy C F(dy).

Proof.

1. We prove this part by induction on n. In the base case,
obviously dg =LC dy. In the inductive case, assume
that d, C dy41. Since F is monotone, d, 1 = F(dy) C
F(dny1) =dnya.

2. By definition, dy C | |,,¢,, dn = do for all n € w. Since
F is monotone, dy 1 = F(dy) E F(d). Obviously, also
do=1CF(d,). O

The set of real valued functions on X x X, which is a
superset of D(X), can be turned into a Banach space by
means of the sup-norm: || f|| = maxy, x,ex | f(x1,x2)|. Re-
call that a function F : D(X) — D(X) is continuous if for
all € > 0 there exists § > 0 such that ||d; —d3|| < & implies
|F(dy) — F(dy)| < € for all dq,d, € D(X).

Theorem 1. If F : D(X) — D(X) is monotone and continuous,
then the closure ordinal of F is w.

Proof. First, we show that d,, C F(d,,). By Proposition 1.2,
F(dy,) is an upper bound of {d, | n € w}. Since d,, is its
least upper bound by definition, d,, C F(dy).

Next, we show that (d,)ne, converges to d,,. It suffices
to show that

Ve >0: Imew: Vn>m: ||d, —dy| <e€.

Let € > 0 and xq,xy € X. By definition, d(x1,x2) =
SUPpeq dn (X1, X2). Hence, from Proposition 1.1 we can con-
clude that

My, x, € W1 VN =My, 0 |do (X1, X2) — dn (X1, %2)| < €.
Hence,
vn > max{my, x, | X1, X2 € X}: ||dp —dn|l <e€.

That is, (dp)new converges to d,.

Since F is continuous, we can deduce from the above
that (F(dn))new converges to F(d,) and, hence, (dp)ncw
converges to F(d,). That is,

Ve >0: Imew: Vn>m: ||F(dy) —dn| <e.

Hence, for all x1,x3 € X, |F(dy)(x1,X2) — dn(x1,x2)| < €.
Therefore, from Proposition 1.2 we can conclude that
F(dy)(x1, X2) <dn(x1, X2) +€. Consequently, F(d,)(x1,X2) <
SUPpeq dn (X1, X2). Hence, F(dy) Cd,. O

Rather than proving that F is continuous, we can often
prove an even stronger property, namely that F is nonex-
pansive, that is, for all di,dy € D(X), |[F(d1) — F(d2)| <
|ld1 —dz]|. Since F is also assumed to be monotone, it suf-
fices to prove the following.

Corollary 1. If F : D(X) — D(X) is monotone and for all
dy,dy € D(X), d1 3dy implies that for all x1, x3 € X,

F(d1)(X1,%2) — F(d2) (X1, x2) < |ldy — da], (1)

then the closure ordinal of F is w.

Proof. It suffices to show that (1) implies that F is nonex-
pansive and, hence, continuous. Assume (1) and let d1,d; €
D(X). Without loss of generality, suppose that di; 3 d.
Since F is monotone, F(d{) 3 F(d,). Hence,

|Fd1) — F(da)|
= sup |F(d1)(x1,%2) — F(d2)(x1.X2)|

X1,%€X

= sup F(d1)(X1,x2) — F(d2)(x1,x2)

X1,X%€X

[F(d1) 2 F(d2)]
< lldy —dzll [(D)]
Therefore, F is nonexpansive. 0O
Theorem 1 can also be obtained as a corollary of a more

general result about Banach lattices. Recall that the set of
real-valued functions on X x X forms a real vector space.
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