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A widely used method for parameterizing hidden semi-Markov model is using Gaussian
distribution to form the output probability and using Gamma distribution to form the state
duration probability. Most of these models are based on the classical Newton’s method
with second-order convergence, whose iterative convergence speed is slow for large-scale
realtime applications. An improved parameter re-estimation algorithm is introduced for
such parametric hidden semi-Markov model in this paper. The proposed approach is based
on forward and backward algorithm. It applies an iterative method with eighth-order
convergence to improve the performance of the model. The numerical examples validate
the proposed method.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A hidden Markov model (HMM) [1] is defined as a
doubly stochastic process. The underlying stochastic pro-
cess is a discrete-time finite-state homogeneous Markov
chain. The state sequence is not observable and controls
the observable process. The HMMs are an important class
of models that are successful in many application areas.
However, the state duration of an HMM is implicitly a ge-
ometric distribution or exponentially distributed according
p(d) = (1 − aii)a

d−1
ii . This makes the HMM has limitations

in some applications. In order to solve this issue, an ex-
tension of the HMM named hidden semi-Markov model
(HsMM) is proposed. HsMM is defined by allowing the un-
derlying process to be a semi-Markov chain. Each state has
a variable duration, which is associated with the number
of observations produced while in the state. The HsMM is
also called “explicit duration HMM” [1], “variable-duration
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HMM” [2], segmental HMM [3] and hidden semi-Markov
model [4] in the literature.

The first approach to hidden semi-Markov model was
proposed by Ferguson [5]. However, Ferguson’s algorithm
is computationally too expensive to be of practical use in
many applications [4]. In order to reduce the computa-
tional complexity of HsMM, many approaches, e.g., [6] uti-
lized the probability distributions with continuous prob-
ability density functions to form the continuously vari-
able duration and output. Among those previous work,
Gaussian distribution and Gamma distribution are the two
most commonly used means for parameterizing the output
probability and the state duration probability of HsMM.
The main advantage of such a parametric HsMM is three-
fold: (i) A finite mixture of Gaussian components can
model/approximate any continuous distribution with ar-
bitrary precision without any assumption with respect
to distributional properties of the raw data analyzed [7].
(ii) Gamma distribution is a flexible function to express
distributions of different shapes (e.g., exponential/right-
skewed/Gaussian distribution) by adjusting its parame-
ters. (iii) Both of them only have two parameters. In [6],
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Levinson first discussed the re-estimation algorithm for
HsMM whose state durations are Gamma distribution. Af-
ter that, Levinson’s model has been widely used in dif-
ferent areas. However, the main drawback of Levinson’s
algorithm is two-fold: (i) Its re-estimation algorithm is de-
rived from [5] which is computationally expensive. (ii) The
classical Newton’s method with second-order convergence
is applied to solve the parameters of Gamma distribution,
whose iterative convergence speed is slow for large-scale
realtime applications.

In this paper, we propose an improved algorithm for
the widely used parametric HsMM which uses Gaussian
distribution and Gamma distribution to form the output
probability and state duration probability, respectively. The
main contribution of this paper is that the proposed iter-
ative method with eighth-order convergence improve the
efficiency of the Gaussian and Gamma-based parametric
HsMM (G2PHsMM) and enables the model to be used in
most real-time applications.

2. The definition of HsMM

The basic HsMM consists of a pair of stochastic pro-
cesses: the observed process {�ot} and the hidden state
process {Xt}, where t ∈ {1,2, . . .} is the number of obser-
vation (also called event). {�ot} is associated with {Xt} by
the conditional distribution depending on the state process
which is a finite-state semi-Markov chain. The conditional
distributions usually overlap and so, in general, a specific
observation can arise from more than one state. Thus {Xt}
is not observable directly through {�ot} but can be esti-
mated. {�ot} itself may be either discrete or continuous,
univariate or multivariate. The basic structure of the HsMM
is illustrated in Fig. 1. Some notations and definitions used
in this paper are listed in Table 1. We assume that the out-
put process at the tth event depends only on the state of
the underlying semi-Markov chain at event t , i.e., Pr[ �O t =
�ot | �O 1|t−1 = �o1|t−1, X1|t = x1|t] = Pr[ �O t = �ot | Xt = xt].

3. The improved algorithm for G2PHsMM

In G2PHsMM, the representation of the observation PDF,
i.e., bm(�ot), is a finite mixture of the form:

bm(�ot) =
κm∑

k=1

cmkbmk(�ot) =
κm∑

k=1

cmkN (�ot, �μmk,Σmk) (1)

where κm is the number of Gaussian component in
state m, N (�ot, �μmk,Σmk) denotes the multi-dimensional
normal density function with mean vector �μmk and co-
variance matrix Σmk for the kth component in state m.
cmk = P [Ymt = k | Xt = m] is the conditional weight for the
kth mixture component in state m. cmk satisfies the fol-
lowing stochastic constraints: cmk � 0 and

∑κ
k=1 cmk = 1

for m ∈ M and k ∈ [1, κm]. Thus, the bm(�ot) is properly
normalized, i.e.,

∫
O

bm(�o)d�o = 1.
For the PDF of state duration, the representation of

pm(d) is given as follows:

pm(d) = 1

Γ (νm)
dνm−1e−ωmdωνm

m , νm, ωm > 0 (2)

Fig. 1. Structure of HsMM.

Table 1
Notation of symbols.

O the output space of the model
M = {1,2, . . . , M}, the state space including M states of a

semi-Markov chain
D = {1,2, . . .}, the possible state duration
O = {�o1, �o2, . . . , �oT }, the observed event series with T obser-

vations
�ot ∈O, the observed vector at time t
�oa|b = {�oa, �oa+1, . . . , �ob}
X = {X1, X2, . . . , XT }, the underlying state sequence
Xt ∈M, the underlying state at time t
τ r

t ∈D, the remaining time of state Xt

πm ≡ Pr[X1 = m | λ] the initial state probability
amn ≡ Pr[Xt = n | Xt−1 = m, λ], the state transition probability
bm(�ot ) ≡ Pr[ �O t = �ot | Xt = m, λ], the observation probabilities
pm(d) ≡ Pr[τ r

t = d | Xt = m, λ], the state duration probability
λ = {πm,amn,bm(�ot ), pm(d)}, the total parameters of non-

parametric HsMM

where Γ (ν) is the Gamma function and can be calculated
by Γ (ν) = (ν − 1)!, ν ∈ Z

+ . The mean value of d is νm/ωm

and its variance is νm/ω2
m .

To overcome the shortcomings of existing algorithms
designed for G2PHsMM, a new algorithm is proposed
for estimating the parameters of G2PHsMM (i.e., λ =
{πm,amn, cmk, �μmk,Σmk, νm,ωm}). The algorithm is based
on forward–backward algorithm [8] and a new iterative
method with eighth-order convergence which has been
demonstrated valid for solving nonlinear equations [9].

The forward process is defined as:

αt(m,d)
def= P

[�o1|t,
(

Xt, τ
r
t

) = (m,d)
∣∣ λ

]
=

⎧⎨
⎩

πmbm(�o1)pm(d), t = 1
αt−1(m,d + 1)bm(�ot)

+∑
n �=m αt−1(n,1)anm · bm(�ot)pm(d), d � 1

(3)

The backward process is defined as:

βt(m,d)
def= P

[�ot+1|T
∣∣ (

Xt, τ
r
t

) = (m,d), λ
]

=

⎧⎪⎨
⎪⎩

bm(�ot+1)βt−1(m,d − 1), d > 1∑
n �=m amnbn(�ot+1)

×(
∑

d�1 pn(d)βt+1(n,d)), d = 1
1, t = T

(4)

A joint probability function of observing O and a tran-
sition from m to n (n �= m) at time t given λ is defined
by:
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