Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Computing hypergraph width measures exactly

Lukas Moll^a, Siamak Tazari^{b,*,1}, Marc Thurley^{c,2}

^a Humboldt Universität zu Berlin, Berlin, Germany

^b Massachusetts Institute of Technology, Cambridge, MA, United States

^c Centre de Recerca Matemàtica, Bellaterra, Spain

ARTICLE INFO

Article history: Received 25 June 2011 Received in revised form 28 November 2011 Accepted 2 December 2011 Available online 6 December 2011 Communicated by B. Doerr

Keywords: Design of algorithms Graph algorithms Generalized hypertree-width Fractional hypertree-width Exact exponential algorithms

1. Introduction

Hypergraph width measures originated in studying the complexity of *structural* restrictions of constraint satisfaction problems (CSPs). This approach is different from the well-known approach of restricting CSPs to certain types of constraints (see, for example [3]), in so far as it studies the structure of CSP *instances* [7,9,12]. This structure is usually captured by a hypergraph of the instance. Then, for a class of hypergraphs \mathcal{H} the restricted problem CSP(\mathcal{H}) allows only instances with hypergraphs in \mathcal{H} .

Although in the so-called *bounded arity case* the concept of *bounded tree-width* captures the complexity of $CSP(\mathcal{H})$ [10,8], the unbounded arity case is more delicate (cf. [12]). Here, several hypergraph width measures yield

* Corresponding author.

ABSTRACT

Hypergraph width measures are important in studying the complexity of constraint satisfaction problems (CSPs). We present a general exact exponential algorithm for a large variety of these measures. As a consequence, we obtain algorithms which, for a hypergraph H on n vertices and m hyperedges, compute its generalized hypertree-width in time $O^*(2^n)$ and its fractional hypertree-width in time $O(1.734601^n \cdot m)$.³

© 2011 Elsevier B.V. All rights reserved.

larger classes of \mathcal{H} such that CSP(\mathcal{H}) is tractable such as those of bounded (generalized) hypertree-width [7] and bounded fractional hypertree-width [9].

We present the first non-trivial exact algorithm for computing any hypertree-width measure defined by some *monotone width function* f. This implies an algorithm for both fractional and generalized hypertree-width by essentially the same means.

Theorem 1. *Let H be a hypergraph on n vertices and m hyper-edges.*

- (i) The generalized hypertree-width of H can be computed in $O^*(2^n)$ time.
- (ii) Its fractional hypertree-width can be computed in O(m1.734601ⁿ) time.

We will show that for computing the width of a hypergraph H it is sufficient to compute a tree decomposition of its primal graph while measuring the width in terms of H. This enables us to almost seamlessly adapt the combinatorial and algorithmic results of [4,5] and [6] for tree decompositions of graphs. The proof of Theorem 1 will be

E-mail address: siamak.tazari@gmail.com (S. Tazari).

¹ Supported by a fellowship within the Postdoc-Programme of the German Academic Exchange Service (DAAD).

² Supported in part by Marie Curie Intra-European Fellowship 271959.

³ We omit factors polynomial in *n* whenever the base of the exponent is rounded. This is justified as $c^n \cdot n^{O(1)} = O((c + \epsilon)^n)$ for every $\epsilon > 0$. We also use the notation O^* to suppress polynomial factors.

^{0020-0190/\$ –} see front matter @ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2011.12.002

given in Section 3.⁴ Note that all of these algorithms require exponential space in the worst case.

2. Preliminaries

Graphs and hypergraphs. A hypergraph is a pair H = (V(H), E(H)) consisting of a set of vertices V(H) and a set E(H) of subsets of V(H), the hyperedges of H. Two vertices are *adjacent* if there exists an edge that contains both of them. Unless otherwise mentioned, our hypergraphs have n vertices and m edges and do not contain isolated vertices.

We use standard notation for graphs. As these are special cases of hypergraph we shall define some concepts only for hypergraphs. Let G = (V(G), E(G)) be a graph. For a set $S \subseteq V$ we define $S^2 = \{\{u, v\} \mid u, v \in S, u \neq v\}$. The primal graph of a hypergraph H is the graph \underline{H} on V(H) with $E(\underline{H}) := \{\{u, v\} \mid u, v \in e, \text{ for some } e \in E(H)\}.$

Tree decompositions and width functions. A *tree decomposition* of a hypergraph *H* is a pair (T, \mathcal{B}) , where *T* is a tree and $\mathcal{B} = \{B_t \mid t \in V(T)\}$ is a family of subsets of V(H), called *bags*, such that (i) every vertex of *H* appears in some bag of \mathcal{B} ; (ii) for every $e \in E(H)$ there is a $t \in V(T)$ such that $e \subseteq B_t$; and (iii) for every vertex of *H* the set of bags containing it forms a subtree *T*. A *width function* on the vertex set *V* is a monotone function $f : 2^V \to \mathbb{R}_0^+$, i.e. with $f(X) \leq f(Y)$ for $X \subseteq Y$. We define $\mathcal{F}(V)$ to be the set of all width functions on *V*. The *f*-width *of a tree decomposition* \mathcal{T} is max{ $f(B_t) \mid t \in V(T)$ }. Recall also that \mathcal{T} is *small*, if for all $t, t' \in V(T)$ with $t \neq t'$ we have $B_t \nsubseteq B_{t'}$. It is easy to see that there is always a small tree decomposition of minimal *f*-width.

The *f*-hypertree-width of a hypergraph *H*, denoted by f-htw(*H*), is the minimum *f*-width of all tree decompositions of *H*. We call such a tree decomposition an *f*-optimal tree decomposition. When considering graphs, we use the analogous notion of *f*-tree-width and denote it by f-tw(*G*).

Let *H* be a hypergraph and $X \subseteq V(H)$. An *edge cover* (w.r.t. *H*) of *X* is a subset $E' \subseteq E(H)$ such that $X \subseteq \bigcup_{e \in E'} e$. Define $\rho_H(X)$ as the size of the smallest edge cover of *X* w.r.t. *H*. $X \subseteq V(H)$ a mapping $\gamma : E(H) \to [0, 1]$ is a fractional edge cover of *X* (w.r.t. *H*), if $\sum_{v \in e} \gamma(e) \ge 1$ for all $v \in X$. Then $\rho_H^*(X)$ is the minimum of $\sum_{e \in E(H)} \gamma(e)$ taken over all fractional edge covers of *X* w.r.t. *H*.

Definition 1. Let *H* be a hypergraph.

- The tree-width of *H* is tw(H) := s-htw(*H*) where s(X) = |X| 1.
- The generalized hypertree-width of *H* is $ghw(H) := \rho_H htw(H)$.
- The fractional hypertree-width of *H* is $fhw(H) := \rho_H^* htw(H)$.

Separators. For two non-adjacent vertices u, v of a graph G, a set $S \subseteq V(G)$ is a u, v-separator if u and v are in different components of G - S and S is minimal if it does not properly contain a u, v-separator. By Δ_G we denote the set of all minimal separators of G, i.e. all S which are minimal u, v-separators for some u, v. Since a minimal separator can be contained in another one, we single out the set of inclusion-minimal separators Δ_G^* , i.e. those not containing another one.

Let $C_G(S)$ denote the set of connected components of G - S. A component $C \in C_G(S)$ is *full* w.r.t. *S*, if its neighborhood satisfies N(C) = S. By $C_G^*(S)$ we denote the set of all full connected components of G - S. A *block* associated with an $S \in \Delta_G$ is a pair (S, C) for some component $C \in C_G(S)$. A block is called *full* if *C* is full w.r.t. *S*. By definition, the set *S* of a block (S, C) is required to be a minimal separator. By a slight abuse of terminology, we call a block (S, C) inclusion minimal if *S* is an inclusion minimal separator. The *realization* R(S, C) of a block is the graph obtained from $G[S \cup C]$ by turning *S* into a clique.

Triangulations, potential maximal cliques. A graph *G* is triangulated or chordal if every cycle of length at least 4 in *G* has a chord. A triangulation of *G* is a chordal graph *I* on *V*(*G*) such that $E(G) \subseteq E(I)$. Furthermore, *I* is a minimal triangulation if there is no chordal graph *I'* on *V*(*G*) with $E(G) \subseteq E(I') \subset E(I)$. A set $\Omega \subseteq V(G)$ is a potential maximal clique of *G*, if there is a minimal triangulation *I* of *G* having Ω as a maximal clique. The set of all potential maximal clique with the components $C(\Omega)$ of $G - \Omega$ and $C \in C(\Omega)$; then (N(C), C) is called a block associated with Ω .

The *f*-clique-number of *G* is

$$f - \omega(G) := \max_{\Omega \text{ is a clique of } G} f(\Omega)$$

Let \mathcal{K}_G be the set of maximal cliques of G. A tree on \mathcal{K}_G is a labeled tree $\mathcal{T} := (T, (\Omega_t)_{t \in V(T)})$ such that there is a bijection between \mathcal{K}_G and T. \mathcal{T} is a clique-tree of G, if it additionally satisfies the clique-intersection property: For all distinct $\Omega, \Omega' \in \mathcal{K}_G$ the clique $\Omega \cap \Omega'$ is contained in every clique on the unique path connecting Ω and Ω' in \mathcal{T} .

Lemma 1. Let *G* be a graph and $f \in \mathcal{F}(V(G))$ a width function. Then

$$f - \mathsf{tw}(G) = \min_{\substack{I \text{ is a triangulation of } G}} f - \omega(I).$$
(1)

Furthermore, the minimum on the right-hand side is attained by a minimal triangulation of G.

Proof. Let *I* be any triangulation of *G*. Since $E(G) \subseteq E(I)$, every tree decomposition of *I* is also a tree decomposition of *G* and so, $f - tw(G) \leq f - tw(I)$. Further, by the well-known fact that a graph *I* is chordal if and only if it has a clique tree, it is not hard to see that $f - tw(I) = f - \omega(I)$ and thus $f - tw(G) \leq f - \omega(I)$.

For the other direction, let $\mathcal{T} = (T, (B_t)_{t \in V(T)})$ be a small f-optimal tree decomposition of G, i.e. f-width($\mathcal{T}) = f$ -tw(G). We construct a triangulation I := (V(G), E(I))

⁴ The proofs of some lemmas are straightforward adaptions from the cited references and are omitted. For the sake of completeness, we have made all proofs available online at http://arxiv.org/abs/1106.4719.

Download English Version:

https://daneshyari.com/en/article/429025

Download Persian Version:

https://daneshyari.com/article/429025

Daneshyari.com