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Hypergraph width measures are important in studying the complexity of constraint
satisfaction problems (CSPs). We present a general exact exponential algorithm for a large
variety of these measures. As a consequence, we obtain algorithms which, for a hypergraph
H on n vertices and m hyperedges, compute its generalized hypertree-width in time O ∗(2n)

and its fractional hypertree-width in time O (1.734601n · m).3

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Hypergraph width measures originated in studying the
complexity of structural restrictions of constraint satisfac-
tion problems (CSPs). This approach is different from the
well-known approach of restricting CSPs to certain types
of constraints (see, for example [3]), in so far as it stud-
ies the structure of CSP instances [7,9,12]. This structure is
usually captured by a hypergraph of the instance. Then, for
a class of hypergraphs H the restricted problem CSP(H)

allows only instances with hypergraphs in H.
Although in the so-called bounded arity case the con-

cept of bounded tree-width captures the complexity of
CSP(H) [10,8], the unbounded arity case is more delicate
(cf. [12]). Here, several hypergraph width measures yield
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is rounded. This is justified as cn · nO (1) = O ((c + ε)n) for every ε > 0. We
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larger classes of H such that CSP(H) is tractable such
as those of bounded (generalized) hypertree-width [7] and
bounded fractional hypertree-width [9].

We present the first non-trivial exact algorithm for
computing any hypertree-width measure defined by some
monotone width function f . This implies an algorithm for
both fractional and generalized hypertree-width by essen-
tially the same means.

Theorem 1. Let H be a hypergraph on n vertices and m hyper-
edges.

(i) The generalized hypertree-width of H can be computed in
O ∗(2n) time.

(ii) Its fractional hypertree-width can be computed in
O (m1.734601n) time.

We will show that for computing the width of a hyper-
graph H it is sufficient to compute a tree decomposition
of its primal graph while measuring the width in terms
of H . This enables us to almost seamlessly adapt the com-
binatorial and algorithmic results of [4,5] and [6] for tree
decompositions of graphs. The proof of Theorem 1 will be
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given in Section 3.4 Note that all of these algorithms re-
quire exponential space in the worst case.

2. Preliminaries

Graphs and hypergraphs. A hypergraph is a pair H =
(V (H), E(H)) consisting of a set of vertices V (H) and a set
E(H) of subsets of V (H), the hyperedges of H . Two vertices
are adjacent if there exists an edge that contains both of
them. Unless otherwise mentioned, our hypergraphs have
n vertices and m edges and do not contain isolated ver-
tices.

We use standard notation for graphs. As these are spe-
cial cases of hypergraph we shall define some concepts
only for hypergraphs. Let G = (V (G), E(G)) be a graph. For
a set S ⊆ V we define S2 = {{u, v} | u, v ∈ S, u �= v}. The
primal graph of a hypergraph H is the graph H on V (H)

with E(H) := {{u, v} | u, v ∈ e, for some e ∈ E(H)}.

Tree decompositions and width functions. A tree decom-
position of a hypergraph H is a pair (T , B), where T is a
tree and B = {Bt | t ∈ V (T )} is a family of subsets of V (H),
called bags, such that (i) every vertex of H appears in some
bag of B; (ii) for every e ∈ E(H) there is a t ∈ V (T ) such
that e ⊆ Bt ; and (iii) for every vertex of H the set of bags
containing it forms a subtree T . A width function on the
vertex set V is a monotone function f : 2V → R+

0 , i.e. with
f (X) � f (Y ) for X ⊆ Y . We define F (V ) to be the set of
all width functions on V . The f -width of a tree decomposi-
tion T is max{ f (Bt) | t ∈ V (T )}. Recall also that T is small,
if for all t, t′ ∈ V (T ) with t �= t′ we have Bt � Bt′ . It is easy
to see that there is always a small tree decomposition of
minimal f -width.

The f -hypertree-width of a hypergraph H , denoted by
f -htw(H), is the minimum f -width of all tree decom-
positions of H . We call such a tree decomposition an f -
optimal tree decomposition. When considering graphs, we
use the analogous notion of f -tree-width and denote it by
f -tw(G).

Let H be a hypergraph and X ⊆ V (H). An edge cover
(w.r.t. H) of X is a subset E ′ ⊆ E(H) such that X ⊆ ⋃

e∈E ′ e.
Define ρH (X) as the size of the smallest edge cover of X
w.r.t. H . X ⊆ V (H) a mapping γ : E(H) → [0,1] is a frac-
tional edge cover of X (w.r.t. H), if

∑
v∈e γ (e) � 1 for all

v ∈ X . Then ρ∗
H (X) is the minimum of

∑
e∈E(H) γ (e) taken

over all fractional edge covers of X w.r.t. H .

Definition 1. Let H be a hypergraph.

• The tree-width of H is tw(H) := s -htw(H) where
s(X) = |X | − 1.

• The generalized hypertree-width of H is ghw(H) :=
ρH -htw(H).

• The fractional hypertree-width of H is fhw(H) :=
ρ∗

H -htw(H).

4 The proofs of some lemmas are straightforward adaptions from the
cited references and are omitted. For the sake of completeness, we have
made all proofs available online at http://arxiv.org/abs/1106.4719.

Separators. For two non-adjacent vertices u, v of a graph
G , a set S ⊆ V (G) is a u, v-separator if u and v are in dif-
ferent components of G − S and S is minimal if it does not
properly contain a u, v-separator. By �G we denote the set
of all minimal separators of G , i.e. all S which are minimal
u, v-separators for some u, v . Since a minimal separator
can be contained in another one, we single out the set of
inclusion-minimal separators �∗

G , i.e. those not containing
another one.

Let CG(S) denote the set of connected components of
G − S . A component C ∈ CG(S) is full w.r.t. S , if its neigh-
borhood satisfies N(C) = S . By C∗

G(S) we denote the set
of all full connected components of G − S . A block associ-
ated with an S ∈ �G is a pair (S, C) for some component
C ∈ CG(S). A block is called full if C is full w.r.t. S . By
definition, the set S of a block (S, C) is required to be a
minimal separator. By a slight abuse of terminology, we
call a block (S, C) inclusion minimal if S is an inclusion
minimal separator. The realization R(S, C) of a block is the
graph obtained from G[S ∪ C] by turning S into a clique.

Triangulations, potential maximal cliques. A graph G is
triangulated or chordal if every cycle of length at least 4 in
G has a chord. A triangulation of G is a chordal graph I
on V (G) such that E(G) ⊆ E(I). Furthermore, I is a min-
imal triangulation if there is no chordal graph I ′ on V (G)

with E(G) ⊆ E(I ′) ⊂ E(I). A set Ω ⊆ V (G) is a potential
maximal clique of G , if there is a minimal triangulation I of
G having Ω as a maximal clique. The set of all potential
maximal cliques of G is denoted by ΠG . Let Ω be a poten-
tial maximal clique with the components C(Ω) of G − Ω

and C ∈ C(Ω); then (N(C), C) is called a block associated
with Ω .

The f -clique-number of G is

f -ω(G) := max
Ω is a clique of G

f (Ω).

Let KG be the set of maximal cliques of G . A tree on KG
is a labeled tree T := (T , (Ωt)t∈V (T )) such that there is a
bijection between KG and T . T is a clique-tree of G , if it
additionally satisfies the clique-intersection property: For all
distinct Ω,Ω ′ ∈ KG the clique Ω ∩ Ω ′ is contained in ev-
ery clique on the unique path connecting Ω and Ω ′ in T .

Lemma 1. Let G be a graph and f ∈ F (V (G)) a width function.
Then

f -tw(G) = min
I is a triangulation of G

f -ω(I). (1)

Furthermore, the minimum on the right-hand side is attained by
a minimal triangulation of G.

Proof. Let I be any triangulation of G . Since E(G) ⊆ E(I),
every tree decomposition of I is also a tree decomposition
of G and so, f -tw(G) � f -tw(I). Further, by the well-
known fact that a graph I is chordal if and only if it has a
clique tree, it is not hard to see that f -tw(I) = f -ω(I) and
thus f -tw(G) � f -ω(I).

For the other direction, let T = (T , (Bt)t∈V (T )) be a small
f -optimal tree decomposition of G , i.e. f -width(T ) =
f -tw(G). We construct a triangulation I := (V (G), E(I))
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