Information Processing Letters 111 (2011) 754-760

Contents lists available at ScienceDirect )
Information
Processing Letters

Information Processing Letters

www.elsevier.com/locate/ipl

On the complexity of tree pattern containment with arithmetic
comparisons

Foto N. Afrati?, Sara Cohen®*1, Gabriel Kuper €

a Department of Electrical and Computing Engineering, National Technical University of Athens (NTUA), 15773 Athens, Greece
b Department of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
¢ Dipartimento di Ingegneria e Scienza dell'Informazione Via Sommarive, 14 1-38123 Povo, Trento, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 15 November 2010

Received in revised form 10 February 2011
Accepted 28 April 2011

Available online 12 May 2011

In this paper we investigate the complexity of query containment problem for tree patterns
(which express a fragment of XPath) with arbitrary arithmetic comparisons. We assume
that attributes take values from a totally ordered domain and allow constraints that
involve arithmetic comparisons. We show that the containment problem is 172" -complete
in the general case, but remains co-NP complete for tree patterns with left semi-interval

Communicated by J. Chomicki

(<, <, =) or right semi-interval (>, >, =) attribute constraints.

Keywords:

Databases

Query containment
Tree patterns

XPath queries
Arithmetic comparisons

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Containment of XPath queries is a well-developed area
(e.g., [1-3]). There has been some work on containment
with equality (=) or inequality constraints () on vari-
ables. In particular, [3] studies the containment problem
for many fragments of XPath, with and without DTDs, and
with constraints on variables. Work on containment in the
presence of dependency constraints is studied in [1].

In this paper, we focus on tree patterns with the child
and descendant axes, but allow arbitrary arithmetic con-
straints on the variables; our constraints are comparisons
from the set {<, <, >, >, =}. Our tree patterns can express
the fragment of XPath including the child and descendent
axes, and data comparison filters. In addition, we can ex-
press arbitrary comparisons between data values of nodes,

* Corresponding author.
E-mail addresses: afrati@softlab.ntua.gr (F.N. Afrati), sara@cs.huji.ac.il
(S. Cohen), kuper@acm.org (G. Kuper).
1 Sara Cohen was partially supported by the Israel Science Foundation
(Grant 143/09).

0020-0190/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2011.04.014

which is not directly expressible in XPath. Containment of
XPath, or of tree patterns, with arbitrary arithmetic con-
straints has not been studied in the past. We use the term
attributes, as in the XPath standard, to allow more than
one variable per node, and to allow comparisons of dif-
ferent attributes with each other. We give complexity re-
sults for the general problem, and then give tighter bounds
for the case in which the comparisons are restricted to
LSI (left semi-interval) or RSI (right semi-interval) con-
straints [4,5].

1.1. Related work

The are few works that study extending XPath with
constraints. [6] discusses satisfiability for a large class of
XPath fragments, including data join. These are a special
case of arithmetic comparisons, and can be easily ex-
pressed in our framework. Examination of the proofs in [6]
shows that their proofs carry over easily to our model, giv-
ing the same PTIME complexity bounds for containment.

In [3], complexity results for the query containment
problem are derived for XPath queries with DTDs, dis-
junction and equality and inequality constraints. An almost


http://dx.doi.org/10.1016/j.ipl.2011.04.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:afrati@softlab.ntua.gr
mailto:sara@cs.huji.ac.il
mailto:kuper@acm.org
http://dx.doi.org/10.1016/j.ipl.2011.04.014

EN. Afrati et al. / Information Processing Letters 111 (2011) 754-760 755

complete classification of the complexity of the contain-
ment problem is established there for various fragments of
such languages. In [1], dependency constraints are added
to the basic fragment of XPath and both the problem
of query containment and the related problem of query
reformulation are studied. [7] shows decidability of con-
tainment for various XPath fragments with DTDs and a
special class of integrity constraints. In [8] query contain-
ment is investigated for a larger fragment of XPath than
the core (which does not include constraints) XPath con-
sidered in previous papers and of the core XPath frag-
ment in the present paper. Containment of conjunctive
queries with data comparisons, over documents, was stud-
ied in [9]. Since arbitrary conjunctive queries are allowed,
their queries do not necessarily correspond to trees.

A related problem is that of determining satisfiability of
XPath queries, since in logics closed under Boolean opera-
tors, containment reduces to satisfiability. Data tree pat-
terns, i.e., trees with child and descendant edges, labeled
nodes and (in)equality constraints on data values, were
studied in [10]. Specifically, the query evaluation problem,
as well as satisfiability in the presence of a DTD were stud-
ied for Boolean combinations of data tree patterns. Note
that [10] is unique in that it uses injective semantics, i.e.,
nodes in a data pattern must be mapped to different doc-
ument nodes. Satisfiability of several fragments of XPath,
allowing data comparisons, was also studied in [11,12].

2. Preliminary definitions
2.1. XML documents

Let A, and N, be fixed infinite sets of element and
attribute names, and let D be a fixed infinite and totally
ordered domain of values. We model XML documents as un-
ranked trees, where each node has a label taken from A.
In addition a node can have any number of attributes, with
names from N, and values in D. We formally define doc-
uments below.

Definition 2.1 (Document). A document is a tuple d =
WV, E,r, lab, @) where

1. (W, &,r) is an unranked tree with nodes V), edges &
and root r € V;

2. lab is a function from V to N, which associates each
node with an element name;

3. for each a € N, @, is a partial function from V to D,
which associates nodes with attributes and values.

2.2. Query syntax

Tree pattern queries (or simply queries for short) are de-
fined in a similar fashion to documents, with two main
differences. First, queries have two types of edges: child-
edges and descendant-edges. Second, queries can have a
boolean formula of constraints over attribute values. The
formal definition of a query follows next.

Definition 2.2 (Query). A query is a tuple g = (V, &/, &y, T,
lab, a, X) where

o (V,E/UEy, 1) is an unranked tree with nodes V, edges
&/ UEy and root r e V;

e &£ and £ are disjoint sets, called child and descendant
edges, respectively;

e lab is a function from V to N. U {*}, which associates
each node with an element name or with a special
symbol x*, called the wildcard symbol;

e « is a conjunction of atomic comparisons of the form

@,X0@,Y @,X6c¢

where X,Y €V, a,b e Ny, ce D, and 0 is one of the
relations >, <, <, >, =, and #.

e X is a tuple of distinct nodes of g, called the distin-
guished nodes.

To make the presentation clear, we use lowercase let-
ters from the end of the alphabet (x,y,...) to denote
nodes in a document, while uppercase letters from the end
of the alphabet (X,Y,...) denote nodes in a query. We
will use lowercase letters from the beginning of the al-
phabet (a, b) to denote names of attributes and uppercase
letters from the beginning of the alphabet to denote ele-
ment names (A, B).

We call « the attribute constraint of q. We will be par-
ticularly interested in some special types of attribute con-
straints. We say that « is a semi-interval constraint (SI con-
straint for short) if all the atomic comparisons in « are of
the form @,X6c where 6 € {>, <, <, >, =}. Similarly, we
say that o is a left (resp. right) semi-interval constraint (or
LSI, resp. RSI, for short) if all its atomic comparisons have
the form @,X6c where 6 € {<, <, =} (resp. 6 € {>, >, =}).
Note that our LSI and RSI constraints allow comparisons
that equate an attribute value to a constant, which is a
somewhat more general definition of LSI and RSI than is
typical.

If X =(Xq,...,Xy), we say that q is of arity k. In par-
ticular, if X is the empty tuple, we say that q is Boolean. If
o is the empty conjunction, then we say that q is attribute
oblivious.

2.3. Query semantics

We formally define the semantics of our queries, by
means of homomorphisms.

Let q = (Vq,&/4:E//q: T, labg, g, X) be a query and
d = (Vy,&q,14, labg, @3) be a document. A homomorphism
h:q— dis a mapping from Vy to V; satisfying the follow-
ing conditions

1. h(rooty) = rooty;

2. forall (X,Y)e S/q, (h(X),h(Y)) € &;;

3. for all (X,Y) e 5//q, h(X) is a strict ancestor of h(Y)
ind;

4. for all X €V, labg(X) = * or labg(X) = laby(h(X));

5. « is satisfied by h, i.e., replacing every X in o with
h(X) yields a conjunction that is satisfied over d.

In particular, Property 5 implies that for all @, X appearing
in «, the function @, is defined over h(X) in d.



Download English Version:

https://daneshyari.com/en/article/429037

Download Persian Version:

https://daneshyari.com/article/429037

Daneshyari.com


https://daneshyari.com/en/article/429037
https://daneshyari.com/article/429037
https://daneshyari.com

