
Information Processing Letters 111 (2011) 512–515

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On the cryptanalysis of the hash function Fugue: Partitioning and
inside-out distinguishers

Jean-Philippe Aumasson a, Raphael C.-W. Phan b,∗
a Nagravision SA, route de Genève 22, 1033 Cheseaux, Switzerland
b Electronic & Electrical Engineering, Loughborough University, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 October 2010
Accepted 23 February 2011
Available online 1 March 2011
Communicated by D. Pointcheval

Keywords:
Cryptography
Hash functions
Cryptanalysis
Fugue

Fugue is an intriguing hash function design with a novel shift-register based compression
structure and has formal security proofs e.g. against collision attacks. In this paper, we
present an analysis of Fugue’s structural properties, and describe our strategies to construct
distinguishers for Fugue components.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fugue is a hash function designed by Halevi, Hall and
Jutla of IBM Research, and is one of the 14 candidates in
the second round of the US National Institute of Standards
& Technology (NIST) public competition [1] to select a new
cryptographic hash standard (SHA-3), in the same manner
as the encryption standard AES. Among these 14, Fugue
has one of the least successful third-party analysis pub-
lished.1

Fugue follows a novel type of design, which allows
for formal security arguments against collision attacks and
distinguishing attacks on a dedicated PRF mode [2]. How-
ever, no formal argument is given in favor of its “random”
behavior when the function is unkeyed, as in many hash
function applications.

Fugue-256 (the version of Fugue with 256-bit digests)
updates a state S of 30 words of 32 bits using a transform
R parametrized by a 32-bit message block. R essentially
consists of two AES-like transforms called SMIX applied to

* Corresponding author.
E-mail address: r.phan@lboro.ac.uk (R.C.-W. Phan).

1 See the SHA-3 Zoo wiki: http://ehash.iaik.tugraz.at/wiki/The_SHA-3_
Zoo.

128-bit windows of S , and thus can be easily distinguished
from a random transform. As Fugue adopts a “little at a
time” strategy wherein small message blocks are processed
with a cryptographically weak function, it needs strength-
ening via a stronger output function.

To achieve pseudorandomness Fugue-256 relies on a
much stronger transform than R, called the final round G,
computed after all message blocks are processed through
the R transform. G returns a 256-bit digest from the 960-
bit state by making 18 rounds involving 36 calls to SMIX
(this versus just two calls to SMIX in R). Unlike R, G does
not have trivial distinguishers.

Our preliminary results on Fugue-256 have been pre-
sented informally at the second SHA-3 conference without
proceedings. As a sequel, this paper analyzes specific prop-
erties of Fugue-256’s structure and discusses cryptanalysis
strategies that we optimized to construct distinguishers for
Fugue-256’s output function G. Indeed, since R is weak by
design, the crux of Fugue’s security lies in G. First, Sec-
tion 3 presents our cryptanalysis strategies for constructing
a distinguisher for G’s G1 rounds that needs only two un-
known related inputs. Then, Section 4 discusses the G prop-
erties and corresponding techniques we used to construct
an efficient distinguisher for the full G using chosen inputs.

0020-0190/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2011.02.012

http://dx.doi.org/10.1016/j.ipl.2011.02.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:r.phan@lboro.ac.uk
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://dx.doi.org/10.1016/j.ipl.2011.02.012
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

J.-P. Aumasson, R.C.-W. Phan / Information Processing Letters 111 (2011) 512–515 513

The latter distinguisher consists in exhibiting tuples
of inputs and outputs satisfying some “evasive” property.
Paraphrasing [3], such a property is easy to check but
impossible to achieve with the same complexity and a
non-negligible probability using oracle accesses to an ideal
primitive—in the present case, a fixed-input-length ran-
dom oracle. Such distinguishers are for example relevant
to disprove indifferentiability of permutation constructions
[4,5], or to invalidate indifferentiability claims of hash con-
structions [6]. These distinguishers often use an inside-out
strategy [7,8] to determine inputs and outputs satisfying an
evasive property.

2. Fugue-256

The hash function Fugue-256 processes a message m
by appending it with zeros and an 8-byte encoding of
its bit length to obtain a chain of 32-bit words denoted
m0,m1, . . . ,mN−1. This is processed by updating the 30-
word state S = (S0, . . . , S29) as S ← R(S,mi) for i =
0, . . . , N −1, where S is initialized to a fixed IV. The output
digest is G(S).

For conciseness, we omit the description of the round
transformation R, as our cryptanalysis is irrespective of
this. The reader is referred to [2] for more details of R.
It is sufficient to note that one R is analogous to two AES
rounds. In contrast, G is analogous to 36 AES rounds.

The final round G transforms the internal state (S0, . . . ,

S29) by doing five G1 rounds:

ROR3; CMIX; SMIX;
ROR3; CMIX; SMIX

followed by 13 G2 rounds:

S4+ = S0; S15+ = S0; ROR15; SMIX;
S4+ = S0; S16+ = S0; ROR14; SMIX

where ROR3, ROR15 and ROR14 right-rotate S by 3, 15
and 14 words, respectively, and where + denotes bitwise
exclusive-or (XOR). CMIX is defined as:

S0+ = S4; S1+ = S5; S2+ = S6;
S15+ = S4; S16+ = S5; S17+ = S6.

SMIX bijectively transforms the 128-bit vector (S0, S1,

S2, S3). Inspired by the AES round function, SMIX views
its input as a 4×4 matrix of bytes. First each byte passes
through the AES S-box, then a linear transformation called
Super-Mix is applied. Unlike AES’ MixColumn, Super-Mix
operates on the whole 128-bit state rather than on each
column independently, which makes SMIX stronger than
the original AES round. Super-Mix is the only Fugue com-
ponent that provides bytewise mixing within word bor-
ders, the other Fugue components only provide wordwise
mixing. We refer to [2] for a detailed description of Super-
Mix.

G finally returns as hash value the eight words

S1, S2, S3, (S4 + S0), (S15 + S0), S16, S17, S18.

G thus makes in total 36 calls to SMIX.

Throughout this paper, we will let S j
i denote the value

of Si at the input of G’s round (j + 1) � 1. For example,
S0

5 is the word S5 of the initial state S0, i.e. to be input
to round 1. If the context is clear, we may omit the round
index j for simplicity of notation.

3. Partitioning distinguisher for G1 rounds

We show how to construct a distinguisher that applies
to all the five G1 rounds of G, and analyze the specific
Fugue properties that we exploit. Note that a G1 round
offers more diffusion than a G2 round, i.e. CMIX in a G1
round involving three XORs diffuses more words than the
two XORs in a G2 round.

3.1. Analysis of Fugue properties

The first property we exploit is the fact that the 32-
bit wordsize of Fugue has a fairly large domain, meaning
that more effort is required within the design to ensure
that full bitwise diffusion is achieved, i.e. that a change
in any bit affects all output bits after some Fugue inter-
nal component. What this means is, even if a change in
an input word is said to affect all output words, this may
not be entirely true at the bit level for all bit positions
within the corresponding words. The partitioning distin-
guisher that we present in this section exploits this.

The second exploited property is that Fugue respects
word boundaries and byte boundaries, i.e. the boundaries
between words and bytes in any state of G do not become
misaligned. Although it is common for word based func-
tions to preserve word boundaries, Fugue’s preservation of
byte boundaries (within words) as well, allows to trace a
word down to the granularity of its component bytes. And
this is further amplified by the fact that Fugue’s operations
only perform word-level mixing and no internal mixing
within a word except for the Super-Mix operation of SMIX.

This means that we can trace the different bytes within
a word and observe that they influence bytes at the same
byte location within other words. Let a word be decom-
posed as four bytes b0b1b2b3; if the byte at b0 affects an-
other word via ROR3, ROR15, ROR14, CMIX or the S-box,
that effect will also be at byte position b0 within the latter
word. Only Super-Mix performs bytewise mixing but this
is still largely traceable since it is based on matrix multi-
plication with a constant and sparse linear matrix.

3.2. Constructing the distinguisher

We trace the propagation of the input word S0
5 through

G, where we denote the bytes of S0
5 as B0 B1 B2 B3. This S0

5
propagates with probability one to S4

29. In round 5, ROR3
moves this to position S2, which then enters SMIX. Let the
bytes after the S-box be b0b1b2b3. By inspecting the def-
inition of the matrix N of Super-Mix, the corresponding
output words S0 S1 S2 S3 of the S-box are composed of the
following bytes:

f (0) f (1) f (0123) f (3), f (0) f (023) f (∅) f (3),

f (0123) f (1) f (∅) f (3), f (0) f (1) f (∅) f (0123)

Download English Version:

https://daneshyari.com/en/article/429053

Download Persian Version:

https://daneshyari.com/article/429053

Daneshyari.com

https://daneshyari.com/en/article/429053
https://daneshyari.com/article/429053
https://daneshyari.com

