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In the Fault-Tolerant Facility Placement problem (FTFP) we are given a set of customers C,
a set of sites F , and distances between customers and sites. We assume that the distances
satisfy the triangle inequality. Each customer j has a demand r j and each site may open
an unbounded number of facilities. The objective is to minimize the total cost of opening
facilities and connecting each customer j to r j different open facilities. We present two
LP-rounding algorithms for FTFP. The first algorithm achieves an approximation ratio of 4.
The second algorithm uses the method of filtering to improve the ratio to 3.16.
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1. Introduction

The Fault-Tolerant Facility Placement problem (FTFP), that
we study in this paper, is a generalization of the classi-
cal Uncapacitated Facility Location problem (UFL). In the UFL
problem we wish to connect a collection of customers to
facilities so as to minimize the total cost of connections
and open facilities. The FTFP generalizes UFL by allow-
ing customers to have arbitrary demands and allowing any
number of facilities to be opened at each site, with the re-
striction that any two demands from any given customer
have to be connected to different open facilities.

More specifically, in FTFP we are given a set of sites F
and a set of customers C . At each site i ∈ F we are al-
lowed to open any number of facilities, each at cost f i � 0.
Each customer j ∈ C has an integral demand r j � 1 which
specifies the number of open facilities that j needs to be
connected to. Some facilities that j is connected to could
be located at the same site, as long as they are all differ-
ent and open. For any pair i ∈ F and j ∈ C we are also
given a distance dij � 0 between them that represents the
cost to connect one unit of demand from customer j to
a facility at site i. We assume the distance function to be
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metric, which means that it satisfies the following trian-
gle inequality: dij + dij′ + di′ j′ � di′ j , for all i, i′ ∈ F and
j, j′ ∈ C . That is, connecting i′ to j directly is cheaper than
taking the detour via j′ and i. Given such an instance, the
objective is to minimize the total cost, defined as the sum
of the facility opening costs and the connection costs. UFL
is a special case of FTFP where r j = 1 for each customer j.
Another related problem is the Fault-Tolerant Facility Loca-
tion problem (FTFL). Similar to FTFP, in FTFL each customer
j has a demand r j , but each site can open only one fa-
cility. One implication of this restriction is that every r j

is bounded by |F |. In contrast, in FTFP the maximum r j

can be much larger than |F |. Notice that FTFP can be re-
duced to FTFL by creating R = max j∈C r j copies of each
site. This reduction, however, creates an instance whose
size depends linearly on R , so it does not lead directly to
a polynomial-time approximation algorithm for FTFP.

The FTFP problem was introduced by Xu and Shen [18],1

who gave a 1.861-approximation algorithm2 based on the
approach from [10]. Their algorithm, however, runs in time

1 In [18] this problem is called Fault-Tolerant Facility Allocation. We re-
named it to avoid confusion with Fault-Tolerant Facility Location.

2 The analysis in [18] is flawed, but the authors announced that it has
been corrected in the new version of the paper that is forthcoming (pri-
vate communication).
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proportional to R , so it is polynomial-time only in the re-
stricted case when R is polynomial in |F |.

Related work. The UFL problem has attracted great inter-
est of researchers in both theoretical computer science and
operations research. We now briefly review past work on
UFL and related problems. Since we focus exclusively on
the metric case, we omit the term “metric” in our discus-
sion.

As shown by Guha and Khuller [6], UFL is MaxSNP-hard
and it cannot be approximated to within ratio smaller than
1.463 unless the set cover problem can be approximated to
(1 − ε) ln n for some constant ε > 0, which, in turn, would
imply P = NP [12].

Several approximation algorithms for UFL are based on
LP-rounding: solving the relaxation of the integer program
for UFL and rounding the solution. The first such an algo-
rithm with constant approximation ratio, of at most 3.16,
was developed by Shmoys, Tardos and Aardal [14]. Using a
different rounding approach, Chudak and Shmoys [5] gave
an algorithm with ratio 1 + 2/e ≈ 1.736. This was further
improved to 1.582 by Sviridenko [15]. Recently, Byrka [2]
used the idea of scaling-up fractional solution and tech-
niques from [11] to obtain another LP-rounding algorithm
with currently best known ratio of 1.5.

There is also a number of approximation algorithms for
UFL based on techniques that do not require solving the
LP, including primal–dual methods [9,17], dual fitting [10],
local search [1], or facility cost scaling and greedy augmen-
tation [6,4].

The Fault-Tolerant Facility Location problem (FTFL) was
introduced by Jain and Vazirani [8] who gave a primal–
dual algorithm with approximation ratio O (log R). Their
algorithm consists of R phases, with each phase complet-
ing in polynomial time, yielding overall polynomial time
due to the R � |F | bound. Guha, Meyerson and Muna-
gala [7] developed the first algorithm with constant ap-
proximation ratio, bounded by 2.41. This ratio was then
improved to 2.076 by Swamy and Shmoys [16] and later
by Byrka, Srinivasan and Swamy [3], who achieved the cur-
rently best known ratio of 1.7245 [3].

Our contribution. We present two polynomial time algo-
rithms for FTFP based on LP-rounding. The first algorithm
gives an approximation ratio of 4. Our approach general-
izes the now classical LP-rounding algorithm for UFL, by
Chudak and Shmoys [5,13]. The proof for bounding con-
nection cost is obtained using a natural extension of the
argument for UFL. Bounding facility cost is more challeng-
ing and it requires additional insights into the structure
of the FTFP problem because, unlike in UFL, the algorithm
does not produce a partition of the instance into disjoint
clusters. The second algorithm uses an extra filtering step
to improve the ratio to 3/(1 − e−3) ≈ 3.16, following the
ideas from [14].

2. The LP-rounding algorithm

A natural integer program formulation of FTFP uses
variables yi to denote the number of facilities opened at

site i, xij to denote the number of connections between
site i and customer j, and expresses the constraints and
the objective function using those variables. The two con-
straints are: (i) the number of connections from a cus-
tomer to any given site cannot exceed the number of fa-
cilities opened at that site; and (ii) the total number of
connections from each customer cannot be smaller than
his demand. By relaxing the integral variables to take frac-
tional values, we obtain the following linear program for
FTFP.

minimize
∑
i∈F

f i yi +
∑

i∈F , j∈C
dijxi j (1)

subject to yi − xij � 0 ∀i ∈ F , j ∈ C∑
i∈F

xij � r j ∀ j ∈ C

xij � 0, yi � 0 ∀i ∈ F , j ∈ C.

The dual program is:

maximize
∑
j∈C

r jα j (2)

subject to
∑
j∈C

βi j � f i ∀i ∈ F

α j − βi j � dij ∀i ∈ F , j ∈ C
α j � 0, βi j � 0 ∀i ∈ F , j ∈ C.

Denoting the optimal fractional solutions to (1) and (2)
as (x∗,y∗) and (α∗,β∗), respectively, we have the follow-
ing fact that follows from complementary slackness condi-
tions.

Fact 2.1. α∗
j � dij for all i ∈ F , j ∈ C such that x∗

i j > 0.

2.1. Algorithm LPR

The algorithm works by first solving the LP’s (1) and
(2) to obtain optimal primal and dual fractional solutions
(x∗,y∗) and (α∗,β∗). The algorithm starts with the empty
(infeasible) solution, with no facilities open and no con-
nections, and then proceeds in rounds, gradually opening
facilities and creating new connections. In each round the
algorithm identifies a customer l with minimum α∗

l among
all not-fully-connected customers. For every customer j, let
s j be the yet unsatisfied (residual) demand of j at the be-
ginning of this round, and define its neighborhood to be
N( j) = {i ∈ F : x∗

i j > 0}. The algorithm then picks a site k
with minimum opening cost out of the neighborhood N(l),
and opens sl facilities at site k. The sl demands of customer
l are then fully served by these new facilities. For all other
not-fully-connected customers whose neighborhoods inter-
sect N(l), their residual demands are served up to sl by the
new facilities opened at site k (Fig. 1).

2.2. Analysis

We now show that Algorithm LPR is a 4-approximation
algorithm for FTFP. It is easy to see that the solution (x,y)

computed by the algorithm is feasible. To bound the cost,
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