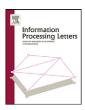
ELSEVIER

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl



Approximating integer programs with positive right-hand sides

Peter Jonsson a,1, Johan Thapper b,*,2

ARTICLE INFO

Article history: Received 18 March 2009 Received in revised form 17 February 2010 Accepted 18 February 2010 Available online 20 February 2010 Communicated by B. Doerr

Keywords: Approximation algorithms Integer programming

ABSTRACT

We study minimisation of integer linear programs with positive right-hand sides. We show that such programs can be approximated within the maximum absolute row sum of the constraint matrix A whenever the variables are allowed to take values in \mathbb{N} . This result is optimal under the unique games conjecture. When the variables are restricted to bounded domains, we show that finding a feasible solution is **NP**-hard in almost all cases.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We study the approximability of minimising integer linear programs with positive right-hand sides. Let n and m be positive integers, representing the number of variables and the number of inequalities, respectively. Let $\mathbf{x}^T = (x_1, \ldots, x_n)$ be a vector of n variables, A be an integer $m \times n$ matrix, $\mathbf{b} \in (\mathbb{Z}^+)^m$, and $\mathbf{c} \in (\mathbb{Q}^+ \cup \{0\})^n$. Finally, let X be some given subset of \mathbb{N}^n . We consider here various restrictions of the following integer linear program:

Minimise
$$\mathbf{c}^T \mathbf{x}$$

subject to $A\mathbf{x} \geqslant \mathbf{b}$, (IP)
 $\mathbf{x} \in X$.

Typically, X is either \mathbb{N}^n or $\{\mathbf{x} \in \mathbb{Z}^n \mid \mathbf{0} \le \mathbf{x} \le \mathbf{d}\}$ for some $\mathbf{d} \in (\mathbb{Z}^+)^n$, where the inequalities are to hold componentwise. A commonly occurring instance of the latter case is when $X = \{0, 1\}^n$, so-called 0–1 programming. In all but very restricted cases, (IP) is **NP**-hard to solve to op-

timality. Instead, the effort is directed towards finding approximation algorithms and improving the bound within which it is possible to find approximate solutions. Formally, a minimisation problem Π is said to be *approximable within* (a real constant) $c \geqslant 1$ if there exists a polynomial time algorithm A such that for all instances x of Π , $A(x)/OPT(x) \leqslant c$.

Let $\mathbf{a}_j^T = (a_{j1}, \dots, a_{jn}) \in \mathbb{Z}^n$ be the jth row of A. We will use the norm $\|\mathbf{a}_j\|_1 = \sum_{i=1}^n |a_{ji}|$ as well as the max-imum absolute row sum norm of A, defined as $\|A\|_{\infty} = \max_{1 \le j \le m} \|\mathbf{a}_j\|_1$. Let $(IP)_k$ denote the subset of (IP) where $\|A\|_{\infty} \le k$. We show that $(IP)_k$ can unconditionally be approximated within k when $X = \mathbb{N}^n$, but cannot be approximated within $k - \epsilon, \epsilon > 0$, if Khot's unique games conjecture holds [9]. We also show that finding a feasible solution to (IP) is **NP**-hard in almost all cases when $X = \{0, \dots, a-1\}^n$.

1.1. Previous work

The approximability of the program (IP) has been extensively studied in the case when A is restricted to nonnegative entries. In this case, the problem is usually referred to as a (generalised, or capacitated) covering problem. Among the problems described by such programs one finds the MINIMUM KNAPSACK PROBLEM, MINIMUM VERTEX COVER (and its k-uniform hypergraph counterpart, described be-

^a Department of Computer and Information Science, Linköpings universitet, SE-581 83 Linköping, Sweden

^b École polytechnique, Laboratoire d'informatique (LIX), 91128 Palaiseau Cedex, France

^{*} Corresponding author.

E-mail addresses: petej@ida.liu.se (P. Jonsson),
thapper@lix.polytechnique.fr (J. Thapper).

¹ Partially supported by the *Center for Industrial Information Technology* (CENIT) under grant 04.01 and by the *Swedish Research Council* (VR) under grant 2006-4532.

² Partially supported by the contract DGA-LIX.

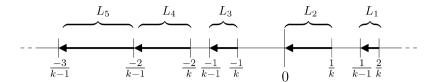


Fig. 1. The intervals L_1, \ldots, L_5 represented by arrows.

low) and various *network design problems* [2]. We will refer to (IP) with non-negative A as (CIP) (covering integer program). Here, X is often taken to be $\{\mathbf{x} \in \mathbb{Z}^n \mid \mathbf{0} \leq \mathbf{x} \leq \mathbf{d}\}$. Indeed, optimal solutions remain feasible after introduction of the bounds $x_i \leq \lceil \max_i b_i/a_{ii} \rceil$.

Hall and Hochbaum [7] restrict A in (CIP) to a 0/1-matrix and give an $||A||_{\infty}$ -approximating algorithm for the case when $X = \{0, 1\}^n$. Bertsimas and Vohra [1] study the general (CIP) with $X = \{0, 1\}^n$ as well as $X = \mathbb{N}^n$. They use both a randomised rounding heuristic with a nonlinear rounding function and deterministic rounding using information about the dual program. For $X = \{0, 1\}^n$, they show that (CIP) can be approximated within $||A||_{\infty}$ using both a deterministic rounding function and a dual heuristic. For $X = \mathbb{N}^n$, they obtain an $||A||_{\infty} + 1$ approximating algorithm. Carr, Fleischer, Leung and Phillips [2] lower the integrality gap of (CIP) with $X = \{0, 1\}^n$ by introducing additional inequalities into the program to obtain an approximation ratio equal to the maximal number of non-zero entries in a row of A. Their claim that the proof immediately generalises to the case when the variables are bounded by any fixed d > 1 seems to be incorrect, but a complete proof for general d is given by Pritchard [11]. Koufogiannakis and Young [10] present an approximation algorithm for a general framework of monotone covering problems, with an approximation ratio equal to the maximal number of variables upon which a constraint depends. The constraints must be monotone (closed upwards), but can be non-convex. This framework in particular includes problems such as (CIP) and MINIMUM SET COVER.

2. Unbounded domain

We assume that $X = \mathbb{N}^n$ throughout this section. Lower bounds for $(IP)_k$ are discussed in Section 2.1. We aim to prove the following result:

Proposition 2.1. (IP) $_k$ can be approximated within k.

The problem $(IP)_1$ is solvable in polynomial time: initially, let $x_i = 0$ for all i, and for each inequality $x_i \geqslant b$, update x_i to $\max\{x_i,b\}$. Any inequality of the form $-x_i \geqslant b$ implies that there are no solutions. In order to prove Proposition 2.1 for $k \geqslant 2$, we give a deterministic 'rounding'-scheme, which produces an integer solution from a rational one, while increasing the value of the objective function by at most k. For an integer $k \geqslant 2$ and $x \in \mathbb{Q}^+ \cup \{0\}$, define the following operation:

$$\hat{x} = \begin{cases} 0 & \text{if } 0 \leqslant x < 1/k, \\ 1 & \text{if } 1/k \leqslant x < 2/k, \\ \lceil (k-1)x \rceil & \text{otherwise.} \end{cases}$$

For a vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, let $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n)^T$. Note that $\mathbf{c}^T \hat{\mathbf{x}} \leqslant k \cdot \mathbf{c}^T \mathbf{x}$. We will show that in addition, $\hat{\mathbf{x}}$ satisfies $A\hat{\mathbf{x}} \geqslant \mathbf{b}$ by showing that for any integer $b \geqslant 1$, we have $\mathbf{a} \cdot \hat{\mathbf{x}} \geqslant b$ whenever $\mathbf{a} \cdot \mathbf{x} \geqslant b$ for any vector $\mathbf{a} = (a_1, \dots, a_n)^T$ with $\|\mathbf{a}\|_1 \leqslant k$. In order to do this, we first introduce a scaling of $\hat{\mathbf{x}}$ which will be easier to work with. Let $x' = \hat{x}/(k-1)$ and extend to vectors, $\mathbf{x}' = (x'_1, x'_2, \dots, x'_k)^T$, as before.

Our first step is to bound the difference $\Delta = \mathbf{a} \cdot \mathbf{x} - \mathbf{a} \cdot \mathbf{x}'$ from above. Let $\delta_i = a_i(x_i - x_i')$ so that $\Delta = \sum_{i=1}^n \delta_i$. Let $t_i = \operatorname{sgn}(a_i) \cdot x_i$ and $t_i' = \operatorname{sgn}(a_i) \cdot x_i'$. Then, $\delta_i = |a_i|(t_i - t_i')$. Fig. 1 illustrates how the t_i' are determined from the t_i in the cases which give positive contributions to Δ . Each arrow represents an interval, and for a t_i in a particular interval, t_i' can be found at the arrow head. Note that there are only two such intervals on the positive axis. To the left of L_5 follows an infinite sequence of left arrows, each of size equal to that of L_5 .

Formally, the intervals L_i , $i \ge 1$, are defined as follows:

$$L_{1} = \left\{ x \in \mathbb{Q} \mid 1/(k-1) \leq x < 2/k \right\},$$

$$L_{2} = \left\{ x \in \mathbb{Q} \mid 0 \leq x < 1/k \right\},$$

$$L_{3} = \left\{ x \in \mathbb{Q} \mid -1/(k-1) < x \leq -1/k \right\},$$

$$L_{4} = \left\{ x \in \mathbb{Q} \mid -2/(k-1) \leq x \leq -2/k \right\},$$

$$L_{i} = \left\{ x \in \mathbb{Q} \mid -(i-2)/(k-1) \leq x < -(i-3)/(k-1) \right\}$$

$$(i \geq 5).$$

When k = 2, the interval L_1 vanishes while L_3 and L_4 become adjacent. Let $L = \bigcup_{i \ge 1} L_i$. Now, δ_i can be bounded as follows, given the location of t_i :

$$\begin{cases} 0 \leqslant \delta_i/|a_i| < (k-2)/k(k-1) & \text{if } t_i \in L_1, \\ 0 \leqslant \delta_i/|a_i| < 1/k & \text{if } t_i \in L_2, \\ 0 \leqslant \delta_i/|a_i| \leqslant 1/k(k-1) & \text{if } t_i \in L_3, \\ 0 \leqslant \delta_i/|a_i| \leqslant 2/k(k-1) & \text{if } t_i \in L_4, \\ 0 \leqslant \delta_i/|a_i| < 1/(k-1) & \text{if } t_i \in L_j, \ j \geqslant 5, \\ \delta_i \leqslant 0 & \text{if } t_i \notin L. \end{cases}$$

Note that when k=2, the upper bound on $\delta_i/|a_i|$ for $t_i \in L_4$ is actually strict, since -2/k is an integer. Thus, $\delta_i < |a_i|/(k-1)$, for all $i \ge 1$.

Lemma 2.2. Let $b \ge 1$ and $k \ge 2$ be integers. If $\mathbf{a} \cdot \mathbf{x} \ge b$ and $\|\mathbf{a}\|_1 \le k$, then $\Delta < 1$.

Proof. Assume that there is an index l such that $t_l \notin L$. Then, $|a_l| > 0$ so $\sum_{i \neq l} |a_i| \le k - 1$. We then have

$$\Delta \leqslant \sum_{i \neq l} \delta_i < \sum_{i \neq l} \frac{|a_i|}{k-1} \leqslant \frac{k-1}{k-1} = 1. \tag{1}$$

Download English Version:

https://daneshyari.com/en/article/429098

Download Persian Version:

https://daneshyari.com/article/429098

Daneshyari.com