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Let μ be a measure supported on a compact connected subset of an Euclidean space, which
satisfies a uniform d-dimensional decay of the volume of balls of the type

αδd � μ
(

B(x, δ)
)
� βδd (1)

where d is a fixed constant. We show that the maximal edge in the minimum spanning
tree of n independent samples from μ is, with high probability ≈ (

log n
n )1/d . While previous

studies on the maximal edge of the minimum spanning tree attempted to obtain the
exact asymptotic, we on the other hand are interested only on the asymptotic up to
multiplication by a constant. This allows us to obtain a more general and simpler proof
than previous ones.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The laws governing the behavior of the minimum span-
ning tree (MST) on points in the unit disk and ball have
been thoroughly researched and applied in the field of mo-
bile computing; see [12] for a survey of the worst case. For
the average case (or points taken randomly), extremely fine
results have been obtained: see [4] for the central limit
theorem for the total length, [2,1] for the dimension of
a typical path, [3, Chapter 6] for an “objective” approach,
[13] for intriguing simulation results, and [6] for efforts to
prove them. See also the book [9] for the strongly related
continuum percolation. The exact asymptotics of the length
of the longest edge of the MST was studied in [10,11,7].

Although adequate for modeling mobile systems in
man-made environments such as inside a room or a build-
ing, Euclidean geometry is perhaps too restrictive for mod-
eling systems in natural settings, such as woods or rugged
terrains. However, there has been much less research on
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MST behavior in other metric spaces and in particular on
fractals. In [8], we studied the worst case problem for the
total weighted MST length. Here, we switch to the average
case and are interested in the length of the longest edge,
which, by the greedy algorithm, is the same as the con-
nectivity threshold, i.e., the minimal number r such that
the graph in which two points are connected if and only if
their metric distance is � r, is connected. In the setting of
a ball in R

d this is known to be, with high probability

≈
(

log n

n

)1/d

where ≈ means that the ratio of the two quantities is
bounded between two absolute constants. We wish to ex-
tend this result to fractal sets.

Clearly, to get any kind of estimate, one has to as-
sume that the fractal is connected. Further, it is clear that
some kind of regularity is needed. To see why regularity
is needed, it might be instructive to consider the following
example: in R

2 take the set F = ⋃∞
i=1(Ai ∪ Bi), consist-

ing of a set of “thick” vertical slabs Ai = [ 1
2i ,

1
(2i−1)

] × [0,1]
connected by “thin” horizontal bridges Bi = [ 1

(2i+1)
, 1

2i ] ×
[0,3−i]; see Fig. 1. Take the normalized Lebesgue mea-
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Fig. 1. The set F .

sure on this set. Now take n random points and connect
them by their MST. Since the bridges become thin very
fast, there will be no points in the very thin bridges that
connect the slabs starting from [1/2 log n,1/(2 log n − 1)]×
[0,1]. Thus, the MST will contain edges that are � c/ log n
long, despite the fact that this set has Hausdorff dimension
2 and is, in fact, a monofractal (a degenerate multifractal
spectrum), which indicates strong regularity in some sense.

Definition 1.1. Let d be a fixed constant. The metric proba-
bility space (F ,ρ,μ) is semi-uniform of dimension d if there
exist some numbers δ0 and 0 < α � β < ∞ such that for
every point x ∈ F and for every 0 < δ < δ0,

αδd � μ
(

B(x, δ)
)
� βδd

where B(x, r) is a ball of radius r centered at x in the met-
ric ρ . We call δ0, α and β the parameters of the metric
probability space.

Examples of such a semi-uniform space are the Can-
tor’s dust and the Sierpinski’s carpet, endowed with the
metric of their embedding in R

n and natural probability
measures [5]. We show that for such probability spaces the
classical asymptotic laws of maximal MST edge still hold
with fractional powers, if the space is connected. For ex-
ample, in the case of Sierpinski’s carpet, with dimension
d = log 8/ log 3, the longest edge of the MST is ≈ (

logn
n )1/d

with probability 1−ε for all ε > 0. Formally, the statement
is

Theorem 1.1. Let F be a compact connected subset of R
k and

let μ be a semi-uniform measure of dimension d on F . Then,
there exist two constants C > c > 0, such that for all ε > 0 and
for any sufficiently large m (depending on ε and d), if Xm =
X1, . . . , Xm are independent samples from μ, then:

1. If r > C(
log m

m )1/d then the set
⋃

B(Xm, r) is connected
with probability at least 1 − ε .

2. If r < c( logm
m )1/d then the set

⋃
B(Xm, r) is connected with

probability at most ε .

Here and below we will use the convention that c and
C denote constants whose value might change from for-
mula to formula and even inside the same formula. c and
C might depend on d, α and β . c will usually denote con-
stants that are “small enough” and C , constants which are
“large enough”.

2. Proof

To prove the first part of the theorem let δ = (
2 logm
αm )1/d

and let {B(pi, δ)}N(δ)
i=1 be a maximal set of disjoint balls

with centers pi ∈ F . Then for each Xi and j,

Pr
[

Xi ∈ B(p j, δ)
]
� 2

log m

m
.

Since the Xm are i.i.d. it follows that Pr is a product mea-
sure. Denote by Aδ the event that there is at least one of
Xi in each of B(p j, δ).

Lemma 2.1. For large enough m, event Aδ occurs with probabil-
ity at least 1 − ε .

Proof. Had all the measures of all the balls been equal, we
could immediately have used the coupon collector. Where
the bins are the B(p j, δ), and the random “coupons” are
the Xi throw. However, the measures of the balls are only
equal up to a constant factor. Still, for all p j ,

2
log m

m
� Pr

[
B(p j, δ)

]
.

Take m/(2 log m) equiprobable balls. Denote those balls by
B(pi, δ

′
i). Note that μ(B(pi, δ

′
i)) = 2 logm

m . Define the event
A′ to have at least one random point Xi in each B(p j, δ

′
j)

after m trials. Note that this is possible since semi-uniform
spaces do not have atoms. Clearly since we only reduced
the volume, it follows that:

Pr[Aδ] � Pr
[
A′].

Now we can bound Pr[A′] using coupon collector argu-
ments, where the number of balls is m and the number
of bins is � m

2 logm 	. Fix i and consider the probability of not
having points in B(pi, δ

′
i) after we had thrown m balls

Pr
[

B
(

pi, δ
′
i

) ∩ Xm = ∅] =
(

1 − 2
logm

m

)m

� 1

m2

for sufficiently large m. Now we use union bound over i,

Pr
[
A′] = 1 − Pr

[
A′] � 1 − m

2 log m

(
1 − 2 logm

m

)m

� 1 − m

log m
· 1

m2
� 1 − ε

and the lemma follows. �
Lemma 2.2. Conditioned on Aδ ,

⋃
B(Xm,3δ) is connected.

Proof. As is well known (and easy to see), the maximality
of the family B(pi, δ) implies that the family

⋃
B(pi,2δ) is

a cover of F . Since it is given that the event Aδ , happens it
follows that the set

⋃
B(Xi,3δ) covers the set

⋃
B(pi,2δ)

and therefore it also covers the set F . Now the lemma
follows directly from the definition of connectivity. Sup-
pose by contradiction that

⋃
B(Xi,3δ) is separated, i.e.,

there exist two open sets U , V s.t. U ∪ V = B(Xi,3δ) and
U ∩ V = ∅. Using U , V , it follows that F is also separated,
leading to a contradiction. �
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