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A connected graph G is optimal-κ if κ(G) = δ(G). It is super-κ if every minimum vertex
cut isolates a vertex. An optimal-κ graph G is m-optimal-κ if for any vertex set S ⊆ V (G)

with |S| � m, G − S is still optimal-κ . We define the vertex fault tolerance with respect
to optimal-κ , denoted by Oκ (G), as the maximum integer m such that G is m-optimal-κ .
The concept of vertex fault tolerance with respect to super-κ , denoted by Sκ (G), is defined
in a similar way. In this paper, we show that min{κ1(G) − δ(G), δ(G) − 1} � Oκ (G) �
δ(G) − 1 and min{κ1(G) − δ(G) − 1, δ(G) − 1} � Sκ (G) � δ(G) − 1, where κ1(G) is the
1-extra connectivity of G . Furthermore, when the graph is triangle free, more refined lower
bound can be derived for O κ (G).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, all graphs are simple. Let G be
a connected graph. A vertex subset S ⊆ V (G) is a vertex
cut if G − S is disconnected. The minimum cardinality of
a vertex cut of G is called the connectivity of G , denoted
by κ(G). A vertex cut S with |S| = κ(G) is called a κ-cut.
In general, the larger κ(G) is, the more reliable the graph
is. Since κ(G) � δ(G), where δ(G) is the minimum degree
of G , a connected graph G with κ(G) = δ(G) is said to
be maximally connected (or optimal-κ for short). It is super-
connected (super-κ for short) if every minimum vertex cut
of G isolates a vertex. A super-κ graph is clearly optimal-κ .

In this paper, we are interested in the vertex fault tol-
erance with respect to optimal-κ and super-κ , the concept
of which is defined in the following.

Definition 1.1. An optimal-κ (resp. super-κ ) graph G is
m-optimal-κ (resp. m-super-κ ) if G − S is still optimal-κ
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Fig. 1. A graph G with Oκ (G) = 1 and Sκ (G) = 0.

(resp. super-κ ) for any vertex set S ⊆ V (G) with |S| � m.
We define the vertex fault tolerance with respect to optimal-κ
(resp. super-κ ), denoted by Oκ (G) (resp. Sκ (G)), as the
maximum integer m such that G is m-optimal-κ (resp.
m-super-κ ).

The graph G in Fig. 1 has Oκ (G) = 1 (notice that
G − {v1, v2} is no longer optimal-κ ) and Sκ (G) = 0 (no-
tice that G − {v1} is no longer super-κ ).

The two concepts in Definition 1.1 generalize those of
optimal-κ and super-κ (the special case when m = 0). In
this paper, we study bounds for Oκ (G) and Sκ (G).

A related work is [7], where Hong and Meng first pro-
posed the concept of edge fault tolerance for super edge
connected graphs. A graph is super edge connected if ev-
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ery minimum edge cut isolates a vertex. A super edge
connected graph G is m-super edge connected if G − S is
still super edge connected for any edge set S ⊆ E(G) with
|S| � m. The maximum integer of such m, denoted by
Sλ(G), is the edge fault tolerance with respect to super edge
connectedness. In [7], the authors showed that {λ′(G) −
δ(G) − 1, δ(G) − 1} � Sλ(G) � δ(G) − 1, where λ′(G) is the
restricted edge connectivity of G (which was first proposed
by Esfahanian and Hakimi in [2]). More refined bounds
are given for regular graphs and Cartesian product graphs.
Furthermore, exact value of Sλ(G) is determined for edge
transitive graph.

Although our bounds for Oκ (G) and Sκ (G) are simi-
lar to those for Sλ(G) in [7], the derivation is much more
complicated. For this purpose, we need the concept of ex-
tra connectivity first proposed by Fàbrega and Fiol [4,5].
A vertex set S of a connected graph G is an i-extra cut
if each component of G − S has order at least i + 1. The
minimum cardinality of all i-extra cuts (if any) is the i-ex-
tra connectivity of G , denoted by κi(G). An i-extra cut S
with |S| = κi(G) is called a κi -cut. In general, κi(G) does
not always exist and the graphs in which κi(G) exist are
said to be κi -connected. For a graph G which is not κi-con-
nected, we define κi(G) = ∞. By the definition, it is easy
to see that κi(G) is monotone non-decreasing in i, that is,
κ1(G) � κ2(G) � κ3(G) � · · · .

In this paper, we show that min{κ1(G)− δ(G), δ(G)−1}
� Oκ (G) � δ(G)− 1 and min{κ1(G)− δ(G)− 1, δ(G)− 1} �
Sκ (G) � δ(G) − 1. Furthermore, when the graph is triangle
free, more refined lower bound can be derived for Oκ (G)

in terms of κi(G).
Next, we introduce some notion which will be used in

this paper. For two disjoint vertex sets U1, U2 ⊂ V (G), de-
note by [U1, U2]G the set of edges of G with one end in
U1 and the other end in U2. For a vertex set U ⊆ V (G),
G[U ] is the subgraph of G induced by U , U = V (G) \ U
is the complement of U , ωG(U ) = |[U , U ]G | is the number
of edges between U and U , NG(U ) = {v ∈ V (G) \ U | v is
adjacent with some vertex in U } is the neighborhood of U ,
NG [U ] = NG(U )∪ U is the the closed neighborhood of U . If U
has exactly one vertex v , we use NG(v) instead of NG({v}),
etc. The degree of a vertex v in G is dG(v) = |NG(v)|. When
the graph under consideration is obvious, we use N(U ), δ,
etc. instead of NG(U ), δ(G), etc.

For more studies on connectivity of graphs, we refer the
reader to survey articles by Fàbrega and Fiol [3], Mader [8],
Oellermann [9] and Hellwig and Volkmann [6]. For termi-
nology not given here, we refer [1] for references.

2. Bounds for Oκ (G)

For a vertex set S ⊆ V (G), to measure whether G − S is
optimal-κ , we need the following necessary and sufficient
condition for a graph to be optimal-κ .

Lemma 2.1. A connected graph G is optimal-κ if and only if
|N(X)| � δ(G) for any non-empty vertex set X with V (G) \
(X ∪ N(X)) 	= ∅.

Proof. In fact, κ(G) = min{|N(X)|: X ⊂ V (G), V (G) \ (X ∪
N(X)) 	= ∅}. The lemma follows from the definition of
optimal-κ . �

The following lemma is an easy observation.

Lemma 2.2. Let S, X be two subsets of V (G) with X � S.
Then NG(X)− S ⊇ NG−S (X − S). Furthermore, equality holds if
S ∩ X = ∅.

If G − S is not optimal-κ , then by Lemma 2.1, there
exists a non-empty vertex set X ⊆ V (G) − S such that
|NG−S(X)| < δ(G − S) and NG−S(X) ∪ X 	= V (G − S). The
next lemma characterizes a special set of such an X .

Lemma 2.3. For a vertex set S ⊆ V (G), suppose X is a non-
empty vertex set such that

(a) X ⊆ V (G) − S, |NG−S(X)| < δ(G − S), NG−S (X) ∪ X 	=
V (G − S), and

(b) under the condition of (a), |X | is as small as possible.

Then

(i) G[X] is connected;
(ii) for any component C of G − N(X) with |V (C)| < |X |,

V (C) ⊆ S;
(iii) |X | � 2;
(iv) for any y ∈ NG−S (X), |NG−S(y) ∩ X | � 2.

Proof. (i) Suppose that G[X] is not connected. Let C be a
component of G[X]. Then V (C) is a non-empty vertex set
of G − S with NG(V (C)) ⊆ NG(X). By Lemma 2.2, we have

NG−S
(

V (C)
) = NG

(
V (C)

) − S ⊆ NG(X) − S

= NG−S(X). (1)

It follows that |NG−S(V (C))| � |NG−S(X)| < δ(G − S) and
NG−S (V (C)) ∪ V (C) ⊆ NG−S (X) ∪ X 	= V (G − S). Hence
V (C) is a smaller non-empty vertex set satisfying condi-
tion (a), contradicting condition (b).

(ii) The proof is similar to that of (i) by showing that
if V (C) � S , then X1 = V (C) − S is a smaller non-empty
set satisfying condition (a). There are two differences here.
The first is that NG−S(X1) ⊆ NG(V (C))− S (by Lemma 2.2)
is used to replace the first equality of Eq. (1); the second
is that the third condition of (a) is satisfied by noting that
X ⊆ V (G − S) − (NG−S(X1) ∪ X1) is non-empty.

(iii) Suppose X has only one vertex x. Then |NG−S(X)| =
dG−S (x) � δ(G − S), contradicting condition (a).

(iv) Suppose there exists a vertex y ∈ NG−S (X) such
that |NG−S(y) ∩ X | = 1. Suppose x is the only vertex
in NG−S(y) ∩ X . Set X1 = X − {x}. By (i), we see that
x ∈ NG(X1). By Lemma 2.2 and the observation NG(X1) ⊆
NG(X) ∪ {x} − {y}, we have |NG−S(X1)| = |NG(X1) − S| �
|NG(X) ∪ {x} − {y} − S| = |NG(X) − S| = |NG−S(X)| <

δ(G − S). Furthermore, NG−S(X1) ∪ X1 = (NG(X1) − S) ∪
X1 ⊆ (NG(X) ∪ {x} − {y} − S) ∪ (X − {x}) ⊆ NG−S (X) ∪ X 	=
V (G − S). A contradiction occurs as before. �
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