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A connected graph G is optimal-x if ¥ (G) = 8(G). It is super-« if every minimum vertex
cut isolates a vertex. An optimal-x graph G is m-optimal-« if for any vertex set S C V(G)
with |S| <m, G — S is still optimal-x. We define the vertex fault tolerance with respect
to optimal-«, denoted by O, (G), as the maximum integer m such that G is m-optimal-«.
The concept of vertex fault tolerance with respect to super-«, denoted by S, (G), is defined

in a similar way. In this paper, we show that min{k1(G) — §(G),8(G) — 1} < 0,(G) <
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8(G) — 1 and min{x1(G) — §(G) — 1,8(G) — 1} < S (G) < 8(G) — 1, where «1(G) is the
1-extra connectivity of G. Furthermore, when the graph is triangle free, more refined lower
bound can be derived for O (G).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, all graphs are simple. Let G be
a connected graph. A vertex subset S C V(G) is a vertex
cut if G — S is disconnected. The minimum cardinality of
a vertex cut of G is called the connectivity of G, denoted
by k(G). A vertex cut S with |S| =« (G) is called a k-cut.
In general, the larger «(G) is, the more reliable the graph
is. Since k(G) < 8(G), where §(G) is the minimum degree
of G, a connected graph G with x(G) = §(G) is said to
be maximally connected (or optimal-« for short). It is super-
connected (super-k for short) if every minimum vertex cut
of G isolates a vertex. A super-« graph is clearly optimal-«.

In this paper, we are interested in the vertex fault tol-
erance with respect to optimal-« and super-«, the concept
of which is defined in the following.

Definition 1.1. An optimal-x (resp. super-«) graph G is
m-optimal-k (resp. m-super-«) if G — S is still optimal-«
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Fig. 1. A graph G with 0,(G) =1 and S, (G) =0.

(resp. super-«) for any vertex set S C V(G) with |S| <m.
We define the vertex fault tolerance with respect to optimal-«
(resp. super-k), denoted by O,(G) (resp. S,(G)), as the
maximum integer m such that G is m-optimal-x (resp.
m-super-k ).

The graph G in Fig. 1 has 0,(G) =1 (notice that
G — {v1,v2} is no longer optimal-x) and S, (G) =0 (no-
tice that G — {v1} is no longer super-«).

The two concepts in Definition 1.1 generalize those of
optimal-k and super-k (the special case when m = 0). In
this paper, we study bounds for O, (G) and S, (G).

A related work is [7], where Hong and Meng first pro-
posed the concept of edge fault tolerance for super edge
connected graphs. A graph is super edge connected if ev-
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ery minimum edge cut isolates a vertex. A super edge
connected graph G is m-super edge connected if G — S is
still super edge connected for any edge set S C E(G) with
|S| < m. The maximum integer of such m, denoted by
S,(G), is the edge fault tolerance with respect to super edge
connectedness. In [7], the authors showed that {).(G) —
8(G) —1,8(G) — 1} < S,(G) < 8(G) — 1, where A'(G) is the
restricted edge connectivity of G (which was first proposed
by Esfahanian and Hakimi in [2]). More refined bounds
are given for regular graphs and Cartesian product graphs.
Furthermore, exact value of S;(G) is determined for edge
transitive graph.

Although our bounds for O,(G) and S, (G) are simi-
lar to those for S;(G) in [7], the derivation is much more
complicated. For this purpose, we need the concept of ex-
tra connectivity first proposed by Fabrega and Fiol [4,5].
A vertex set S of a connected graph G is an i-extra cut
if each component of G — S has order at least i + 1. The
minimum cardinality of all i-extra cuts (if any) is the i-ex-
tra connectivity of G, denoted by «;(G). An i-extra cut S
with |S| = k;(G) is called a «j-cut. In general, «;(G) does
not always exist and the graphs in which k;(G) exist are
said to be kj-connected. For a graph G which is not k;j-con-
nected, we define k;(G) = co. By the definition, it is easy
to see that «;(G) is monotone non-decreasing in i, that is,
k1(G) < k2(G) <k3(G) < ---.

In this paper, we show that min{x1(G) —8(G), §(G) — 1}
< 04(G) €£8(G)—1 and min{k1(G) —8§(G) —1,8(G) —1} <
S« (G) < 8(G) — 1. Furthermore, when the graph is triangle
free, more refined lower bound can be derived for O (G)
in terms of «;(G).

Next, we introduce some notion which will be used in
this paper. For two disjoint vertex sets U, Uy C V(G), de-
note by [U1, Uy]¢ the set of edges of G with one end in
U1 and the other end in Uj,. For a vertex set U C V(G),
G[U] is the subgraph of G induced by U, U = V(G) \ U
is the complement of U, w¢(U) = |[U, Ulg| is the number
of edges between U and U, Ng(U)={ve V(G \U |v is
adjacent with some vertex in U} is the neighborhood of U,
Ng[U]= Ng(U)UU is the the closed neighborhood of U. If U
has exactly one vertex v, we use N¢(v) instead of Ng({v}),
etc. The degree of a vertex v in G is dg(v) = [Ng(v)|. When
the graph under consideration is obvious, we use N(U), &,
etc. instead of Ng(U), §(G), etc.

For more studies on connectivity of graphs, we refer the
reader to survey articles by Fabrega and Fiol [3], Mader [8],
Oellermann [9] and Hellwig and Volkmann [6]. For termi-
nology not given here, we refer [1] for references.

2. Bounds for 0, (G)

For a vertex set S C V(G), to measure whether G — S is
optimal-x, we need the following necessary and sufficient
condition for a graph to be optimal-«.

Lemma 2.1. A connected graph G is optimal-k if and only if
IN(X)| = 8(G) for any non-empty vertex set X with V(G) \
(XUN(X)) #£0.

Proof. In fact, K (G) = min{|IN(X)|: X C V(G),V(G)\ (XU
N(X)) # ¢}. The lemma follows from the definition of
optimal-k. O

The following lemma is an easy observation.

Lemma 2.2. Let S, X be two subsets of V(G) with X ¢ S.
Then Ng(X) —S 2 Ng_s(X —S). Furthermore, equality holds if
SNX=¢n.

If G — S is not optimal-x, then by Lemma 2.1, there
exists a non-empty vertex set X € V(G) — S such that
INg_s(X)| < 8(G —S) and Ng_s(X) U X £ V(G — S). The
next lemma characterizes a special set of such an X.

Lemma 2.3. For a vertex set S C V(G), suppose X is a non-
empty vertex set such that

(@) XS V(G) =S, ING-s(X)| <8(G = S), Ng_s(X) UX #
V(G —Y5),and
(b) under the condition of (a), | X| is as small as possible.

Then

(i) G[X]is connected;
(ii) for any component C of G — N(X) with |V (C)| < |X]|,
V() CS;
(i) 1X]>2;
(iv) forany y € Ng—s(X), [Nc—s(y) N X| > 2.

Proof. (i) Suppose that G[X] is not connected. Let C be a
component of G[X]. Then V(C) is a non-empty vertex set
of G — S with Ng(V(C)) € Ng(X). By Lemma 2.2, we have

Ne-s(V(€)) = Ng(V(C)) =S S Ng(X) — S
= Ng_s(X). (1)

It follows that |[Ng_s(V (C))| < [Ng—s(X)| <8(G — S) and
Ng_s(V(C)) U V(C) € Ng_s(X) U X # V(G — S). Hence
V(C) is a smaller non-empty vertex set satisfying condi-
tion (a), contradicting condition (b).

(ii) The proof is similar to that of (i) by showing that
if V(C) ¢S, then Xy = V(C) — S is a smaller non-empty
set satisfying condition (a). There are two differences here.
The first is that Ng_s(X1) € Ng(V(C)) — S (by Lemma 2.2)
is used to replace the first equality of Eq. (1); the second
is that the third condition of (a) is satisfied by noting that
XCV(G—S)— (Ng_s(X1)U Xq) is non-empty.

(iii) Suppose X has only one vertex x. Then |Ng_s(X)| =
dg_s(x) > 8(G — S), contradicting condition (a).

(iv) Suppose there exists a vertex y € Ng_s(X) such
that [Ng_s(y) N X| = 1. Suppose x is the only vertex
in Ng_s(y) N X. Set X1 = X — {x}. By (i), we see that
X € Ng(X1). By Lemma 2.2 and the observation N¢(X1) C
Ng(X) U {x} — {y}, we have [Ng_s(X1)| = [Nc(X1) — S| <
IN¢(X) U {x} — {y} — S| = IN¢(X) — S| = INg-s(X)| <
8(G — S). Furthermore, Ng_s(X7) U X1 = (Ng(X1) — S) U
X1 EINgX)Ux} —{y} = SHUX = {x}) S Ne_s(X)UX #
V(G — S). A contradiction occurs as before. O
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