ELSEVIER Contents lists available at ScienceDirect ## Applied Catalysis A: General journal homepage: www.elsevier.com/locate/apcata # NO_x storage and reduction over $Cu/K_2Ti_2O_5$ in a wide temperature range: Activity, characterization, and mechanism Qiang Wang a, Jong Shik Chung a,b,* - ^a School of Environmental Science and Engineering, POSTECH, San 31, Hyoja-Dong, Nam-Ku, Pohang 790-784, Republic of Korea - ^b Department of Chemical Engineering, POSTECH, San 31, Hyoja-Dong, Nam-Ku, Pohang 790-784, Republic of Korea #### ARTICLE INFO Article history: Received 8 November 2008 Received in revised form 28 January 2009 Accepted 29 January 2009 Available online 6 February 2009 Keywords: Potassium titanate NO_x storage Oxygen vacancy Structure change K₂Ti₆O₁₃ Vehicle emission #### ABSTRACT A novel NO_x storage-reduction catalyst Cu/K₂Ti₂O₅, which uses K₂Ti₂O₅ rather than Ba and Al₂O₃ as NO_x storage compound as well as support, has been synthesized and investigated. Activity tests including temperature-programmed ramping, isothermal storage, and lean-rich cycling reveal that Cu/K₂Ti₂O₅ adsorbs NO_x over a very wide temperature range (200–600 °C), with two peak temperatures at 280 and 550 °C, respectively. The NO_x storage and reduction mechanism over Cu/K₂Ti₂O₅ is studied in detail. We demonstrate that, at low temperature (200–400 °C), NO_x is adsorbed on the oxygen vacancy sites which are formed on K₂Ti₂O₅ support during the lean-period; whereas at high temperature (500–600 °C), the NO_x storage and reduction is explained by a structure switching between K₂Ti₂O₅ and K₂Ti₆O₁₃ caused by NO₂ adsorption and de-sorption. Our results also provide another option for synthesizing NSR catalysts with K₂Ti₂O₅ or even with other potassium containing compounds. © 2009 Elsevier B.V. All rights reserved. #### 1. Introduction NO_x abatement has been widely recognized as one of the most challenging problems for lean-burn engine emissions [1,2]. To achieve an efficient abatement of NO_x from these emission gases, several technologies including ammonia/urea selective catalytic reduction (ammonia/urea-SCR), hydrocarbon selective catalytic reduction (HC-SCR), and NO_x storage-reduction (NSR) have been developed during the last few decades [3-6]. However, each technology has its own inherent strengths and weaknesses [7]. For example, ammonia/urea-SCR is a more mature technology; however, its implementation for mobile applications will require the development of an ammonia/urea distribution network, with additional social disadvantages (NH3 slip and odor) and enforcement difficulties [8]. HC-SCR is superior to ammonia/urea-SCR in terms of additional infrastructure construction, but the NO_x removal efficiency is low [9]. NSR operates alternatively under lean and rich conditions. NO_x is first stored on the catalyst under lean conditions and subsequently converted to nitrogen by unburned hydrocarbons under rich conditions. Its application is associated with a number of other complications, such as a fuel E-mail address: jsc@postech.ac.kr (J.S. Chung). penalty for the rich events, sensitivity to fuel sulfur levels, and control under transient engine operation [10]. Despite these problems, NSR is still considered as the most promising technology, since it does not require new infrastructure and also provides superior high $De-NO_x$ performance [9]. Typical NSR catalysts consist of a high-surface-area support (e.g., γ -Al₂O₃, TiO₂, ZrO₂, TiO₂–ZrO₂, etc.), a NO_x-storage component (an alkaline or alkaline earth metal oxide, e.g., Ba, K, Ca, Mg, etc.), and a noble metal (e.g., Pt, Rh, etc.) for both oxidation of NO and hydrocarbons, and the reduction of stored NO_x. During the lean burn stage, NO is oxidized by oxygen and stored in the form of nitrate or nitrite. Due to the presence of ample oxygen, HC, H₂, and CO can also be readily oxidized into water and carbon dioxide. When the engine is switched to operate with the normal air-fuel mixture, the resulting exhaust becomes comparatively oxygendeficient. The remaining HC, H₂, and CO will react with the stored NO_x in the presence of noble or transition metals, and selectively reducing to N₂ [10–12]. The classical NSR catalyst is $Pt-Ba/\gamma-Al_2O_3$, which was developed by Toyota [6]. Although a large number of experimental investigations on $Pt-Ba/\gamma-Al_2O_3$ catalyst have been conducted and theoretical models for this reaction have been developed, problems still remain, mainly with respect to sulfur poisoning and thermal stability [13–15]. Deactivation caused by sulfur is the most difficult problem for NSR catalysts; this must be solved before commercial application. Sulfur dioxide is firstly oxidized on precious metals, and it then reacts with the support to form ^{*} Corresponding author at: Department of Chemical Engineering, POSTECH, San 31, Hyoja-Dong, Nam-Ku, Pohang 790-784, Republic of Korea. Tel.: +82 54 279 2267; fax: +82 54 279 5528. aluminum sulfate, which covers the surface of γ -Al₂O₃ or plugs the micro-pores of γ -Al₂O₃. SO_x may also react with the NO_x storage components to form barium sulfate, which is very difficult to decompose [16,17]. At high temperature, the support (γ -Al₂O₃) reacts with NO_x-storage component (Ba) to form BaAl₂O₄, leading to permanent activity loss [18–20]. Potassium is another key element that has shown potential as a storage component with significant benefit at higher temperatures; the K-based nitrate is more stable than the typical Ba-based nitrate [21,22]. Previous studies have demonstrated the good performance of K-based lean NO_x trap catalysts, even in the presence of CO₂ and H₂O in the feed [23-25]. Titanium oxide (TiO₂) has also been reported as the most promising candidate as support to overcome sulfur poisoning, since the stability of sulfates on TiO₂ surface is weaker than that on other oxides. SO₂ deposit on the catalyst with TiO_2 support (3.2 μ mol g^{-1}) is much lower than that on the catalyst with γ -Al₂O₃ support $(7.2 \,\mu\text{mol g}^{-1})$ [19]. Because of the solid reaction between K and TiO₂, however, researchers believe that these two materials cannot be used simultaneously for NSR catalysts [18,19]. Surprisingly, we found that the reaction product K₂Ti₂O₅, synthesized at 850 °C, exhibited a superior NO_x storage capacity at 500–600 °C. We therefore proposed metal-doped K₂Ti₂O₅ (M/ $K_2Ti_2O_5$, M = Pt, Cu, Co, Ce, Ag, etc.) as NSR catalysts, for which the NO_x adsorption temperature could be significantly decreased. Among them, Cu/K₂Ti₂O₅ shows the most interesting performance and most promising applications. Cu has received much attention due to its capability of simultaneous removal of SO₂ and NO_x from flue gases because: (i) Cu readily adsorbs SO₂ in the presence of O₂ to form CuSO₄ in low temperature range (200-400 °C); (ii) CuSO₄ is relatively easy to be regenerated under reducing conditions; (iii) copper compounds (Cu, CuO and CuSO₄) are active for SCR of NO_x to N_2 [26-31]. Eguchi et al. and Machida et al. [32,33] have also reported some Cu-based NO_x storage compounds, e.g., Ba-Cu mixed oxides and La_{1.4}Ba_{0.6}SrCu₂O₆. Therefore, Cu rather than other transition metals was selected and studied. In the present work, Cu/K₂Ti₂O₅ was synthesized and characterized by means of X-ray diffraction (XRD), BET surface area measurement, and field emission scanning electron microscopy (FE-SEM). Its NO_x storage-reduction performance was further studied by temperature-programmed ramping, isothermal storage, and lean-rich cycling tests. Finally, the mechanisms for NO_x storage and reduction over Cu/K₂Ti₂O₅ in both low and high temperature ranges were investigated. #### 2. Experimental #### 2.1. Catalyst synthesis K₂Ti₂O₅ and K₂Ti₆O₁₃ were prepared by the well-established solid state reaction method [34,35]. Briefly, 13.82 g (for K₂Ti₂O₅) or 4.61 g (for K₂Ti₆O₁₃) K₂CO₃ (Yakuri Pure Chemical Co., Ltd.), 7.99 g TiO₂ (Hombikat UV 100), and a proper amount of water were perfectly mixed by ball milling for 24 h, followed by drying in oven over night. After crushing to fine powder, these two samples were, respectively, calcined at 850 and 1180 °C for 10 h in air to obtain $K_2Ti_2O_5$ and $K_2Ti_6O_{13}$. Then $Cu/K_2Ti_2O_5$ was synthesized by incipient wetness impregnation with $Cu(NO_3)_2 \cdot 3H_2O$ as precursor, followed by further calcination at 850 °C for 10 h in air. In this work, the Cu loading is 7.5 wt.%, except when noted otherwise. Cu-Pt/K₂Ti₂O₅ and Cu-Rh/K₂Ti₂O₅ were also prepared by successively impregnating Pt (or Rh) and Cu on K₂Ti₂O₅. H₂PtCl₆·5.7H₂O (Kojima Chemicals Co., Ltd) and RhCl₃·xH₂O (38-40% Rh, Sigma-Aldrich Co., Ltd.) were used as precursors and the obtained samples were further calcined at 850 °C for 10 h in air. #### 2.2. Catalyst characterization The XRD patterns were obtained using an X-ray analyzer (M18XHF, Mac Science Co., Ltd., Yokohama, Japan). Ni-filtered Cu Ka radiation ($\lambda = 1.5415 \text{ Å}$) was used with an X-ray gun operated at 40 kV and 200 mA. Diffraction patterns were obtained within the range of 2θ = 5–80° with a step size of 0.02°. BET surface areas were measured with a Micromeritics ASAP 2010 sorption analyzer using a static volumetric technique, based on the amount of N₂ adsorbed at liquid N₂ temperature. The samples were degassed at 200 °C in vacuum for 5 h before the adsorption measurements. The catalyst morphology was investigated by FE-SEM (Hitachi, S-4200). Fourier transform infrared spectroscopy (FT-IR) experiments were performed using a PerkinElmer 2000 FT-IR spectrophotometer. A selfsupporting thin disc of 13 mm in diameter was prepared by pressing 1 mg catalyst powder and 14 mg KBr (Aldrich, FT-IR grade) using a manual hydraulic press. All spectra were measured with 4 cm^{-1} resolution. #### 2.3. Catalytic activity test NO_x storage and reduction over $Cu/K_2Ti_2O_5$ was investigated by temperature-programmed reaction, isothermal storage at a certain temperature, and lean-rich cycling tests, from which the optimum NO_x storage temperature, the maximum NO_x storage capacity, and the reduction activity of adsorbed NO_x were determined. Before these experiments, fresh $Cu/K_2Ti_2O_5$ was first pretreated with 3.5% H_2 at $400\,^{\circ}C$ for 30 min to remove nitrate residue from the precursor, and the obtained sample was referred to reduced $Cu/K_2Ti_2O_5$. The sample referred to oxidized $Cu/K_2Ti_2O_5$ in the present work was obtained by re-oxidizing the reduced $Cu/K_2Ti_2O_5$ with $10\%\ O_2$ at $400\,^{\circ}C$ for 30 min. All these catalytic activity tests were performed in a flow-reactor, consisting of a packed-bed made of quartz tube (10 mm internal diameter). The reactor was controlled by a proportional-integral-derivative (PID) temperature controller/programmer (Han Kook Electronic Co.), and the temperature was measured by a K-type thermocouple (0.5 mm outer diameter). The reaction gases at the reactor outlet were continuously analyzed by means of a NO_x analyzer (Chemiluminescence NO–NO₂–NOx analyzer, Model 42C, high level, Thermo environmental instruments, Inc.) and an on-line quadrupole mass spectrometer (Balzers Pfeiffer, USA). The stability of adsorbed NO_x on Cu/K₂Ti₂O₅ was evaluated by temperature-programmed de-sorption with He. The NO_x evolution as a function of temperature from 25 to 700 °C (10 °C min⁻¹) was recorded by an on-line quadrupole mass spectrometer (Balzers Pfeiffer, USA). #### 3. Results and discussion #### 3.1. Catalyst characterization Fig. 1 shows the XRD patterns of $K_2Ti_2O_5$, reduced $Cu/K_2Ti_2O_5$, and oxidized $Cu/K_2Ti_2O_5$. As we expected, the reduced $Cu/K_2Ti_2O_5$ was composed of pure Cu doped on $K_2Ti_2O_5$, with the characteristic peaks of Cu at 41.5° and 50.5°, suggesting that CuO was completely reduced to metallic Cu by H_2 at 400 °C. The characteristic peaks of CuO (35.68°, 38.86°) for the oxidized $Cu/K_2Ti_2O_5$ indicated that metallic Cu was re-oxidized to CuO by O_2 at 400 °C. During all these processes, the structure of the $K_2Ti_2O_5$ support remained unchanged. Except for the characteristic peaks of Cu and CuO, all other XRD peaks of the reduced and oxidized $Cu/K_2Ti_2O_5$ matched well with those of synthesized $K_2Ti_2O_5$. A relatively low BET surface area of oxidized $Cu/K_2Ti_2O_5$ (0.5 m^2 g^{-1}) was also observed, further confirming that the catalyst was well crystallized. ### Download English Version: # https://daneshyari.com/en/article/42928 Download Persian Version: https://daneshyari.com/article/42928 <u>Daneshyari.com</u>